DOI QR코드

DOI QR Code

Computational Study on Oligomer Formation of Fibril-forming Peptide of α-Synuclein

  • Received : 2011.12.16
  • Accepted : 2011.12.30
  • Published : 2012.03.20

Abstract

We have studied the oligomerization of a fibril-forming segment of ${\alpha}$-Synulcein using a replica exchange molecular dynamics (REMD) simulation. The simulation was performed with trimers and tetramers of a 12 amino acid residue stretch (residues 71-82) of ${\alpha}$-Synulcein. From extensive REMD simulations, we observed the spontaneous formation of both trimer and tetramer, demonstrating the self-aggregating and fibril-forming properties of the peptides. Secondary structure profile and clustering analysis illustrated that antiparallel ${\beta}$-sheet structures are major species corresponding to the global free energy minimum. As the size of the oligomer increases from a dimer to a tetramer, conformational stability is increased. We examined the evolution of simple order parameters and their free energy profiles to identify the process of aggregation. It was found that the degree of aggregation increased as time passed. Tetramer formation was slower than trimer formation and a transition in order parameters was observed, indicating the full development of tetramer conformation which is more stable than that of the trimer. The shape of free energy surface and change of order parameter distributions indicate that the oligomer formation follows a dock-and-lock process.

Keywords

References

  1. Dobson, C. M. Nature 2003, 426, 884. https://doi.org/10.1038/nature02261
  2. Ross, C. A.; Poirier, M. A. Nat. Med. 2004, 10 Suppl., S10. https://doi.org/10.1038/nm1066
  3. Skovronsky, D. M.; Lee, V. M. Y.; Trojanowskiz, J. Q. Annu. Rev. Pathol-Mech. 2006, 1, 151. https://doi.org/10.1146/annurev.pathol.1.110304.100113
  4. Chiti, F.; Dobson, C. M. Annu. Rev. Biochem. 2006, 75, 333. https://doi.org/10.1146/annurev.biochem.75.101304.123901
  5. Vilar, M.; Chou, H. T.; Luhrs, T.; Maji, S. K.; Riek-Loher, D.; Verel, R.; Manning, G.; Stahlberg, H.; Riek, R. P. Nat'l Acad. Sci. USA 2008, 105, 8637. https://doi.org/10.1073/pnas.0712179105
  6. Eisenberg, D.; Nelson, R.; Sawaya, M. R.; Balbirnie, M.; Sambashivan, S.; Ivanova, M. I.; Madsen, A. O.; Riekel, C. Accounts Chem. Res. 2006, 39, 568. https://doi.org/10.1021/ar0500618
  7. Suk, J. E.; Lokappa, S. B.; Ulmer, T. S. Biochemistry 2010, 49, 1533 https://doi.org/10.1021/bi901753h
  8. Fink, A. L. Accounts Chem. Res. 2006, 39, 628. https://doi.org/10.1021/ar050073t
  9. Uversky, V. N.; Oldfield, C. J.; Dunker, A. K. Annu. Rev. Biophys. 2008, 37, 215. https://doi.org/10.1146/annurev.biophys.37.032807.125924
  10. Dunker, A. K.; Lawson, J. D.; Brown, C. J.; Williams, R. M.; Romero, P.; Oh, J. S.; Oldfield, C. J.; Campen, A. M.; Ratliff, C. R.; Hipps, K. W.; Ausio, J.; Nissen, M. S.; Reeves, R.; Kang, C. H.; Kissinger, C. R.; Bailey, R. W.; Griswold, M. D.; Chiu, M.; Garner, E. C.; Obradovic, Z. J. Mol. Graph. Model. 2001, 19, 26. https://doi.org/10.1016/S1093-3263(00)00138-8
  11. Uversky, V. N. Protein Sci. 2002, 11, 739. https://doi.org/10.1110/ps.4210102
  12. Lucking, C. B.; Brice, A. Cell. Mol. Life Sci. 2000, 57, 1894.
  13. Spillantini, M. G.; Schmidt, M. L.; Lee, V. M.; Trojanowski, J. Q.; Jakes, R.; Goedert, M. Nature 1997, 388, 839. https://doi.org/10.1038/42166
  14. Shults, C. W. P. Nat'l. Acad. Sci. U S A 2006, 103, 1661. https://doi.org/10.1073/pnas.0509567103
  15. Kim, S.; Seo, J. H.; Suh, Y. H. Parkinsonism Relat. D. 2004, 10 Suppl 1, S9. https://doi.org/10.1016/j.parkreldis.2003.11.005
  16. Eliezer, D.; Kutluay, E.; Bussell, R.; Browne, G. J. Mol. Biol. 2001, 307, 1061. https://doi.org/10.1006/jmbi.2001.4538
  17. Uversky, V. N.; Li, J.; Fink, A. L. J. Biol. Chem. 2001, 276, 10737. https://doi.org/10.1074/jbc.M010907200
  18. Uversky, V. N. J. Biomol. Struct. Dyn. 2003, 21, 211. https://doi.org/10.1080/07391102.2003.10506918
  19. Lee, J. H.; Lee, I. H.; Choe, Y. J.; Kang, S.; Kim, H. Y.; Gai, W. P.; Hahn, J. S.; Paik, S. R. Biochem. J. 2009, 418, 311. https://doi.org/10.1042/BJ20081572
  20. Ulmer, T. S.; Bax, A.; Cole, N. B.; Nussbaum, R. L. J. Biol. Chem. 2005, 280, 9595. https://doi.org/10.1074/jbc.M411805200
  21. Iwai, A.; Masliah, E.; Yoshimoto, M.; Ge, N.; Flanagan, L.; de Silva, H. A.; Kittel, A.; Saitoh, T. Neuron 1995, 14, 467. https://doi.org/10.1016/0896-6273(95)90302-X
  22. Ma, B.; Nussinov, R. Curr. Opin. Chem. Biol. 2006, 10, 445. https://doi.org/10.1016/j.cbpa.2006.08.018
  23. Teplow, D. B.; Lazo, N. D.; Bitan, G.; Bernstein, S.; Wyttenbach, T.; Bowers, M. T.; Baumketner, A.; Shea, J. E.; Urbanc, B.; Cruz, L.; Borreguero, J.; Stanley, H. E. Accounts Chem. Res. 2006, 39, 635. https://doi.org/10.1021/ar050063s
  24. Giasson, B. I.; Murray, I. V. J.; Trojanowski, J. Q.; Lee, V. M. Y. J. Biol. Chem. 2001, 276, 2380. https://doi.org/10.1074/jbc.M008919200
  25. Pawar, A. P.; Dubay, K. F.; Zurdo, J.; Chiti, F.; Vendruscolo, M.; Dobson, C. M. J. Mol. Biol. 2005, 350, 379. https://doi.org/10.1016/j.jmb.2005.04.016
  26. Yoon, J.; Jang, S.; Lee, K.; Shin, S. B. Korean Chem. Soc. 2009, 30, 1845. https://doi.org/10.5012/bkcs.2009.30.8.1845
  27. Caceres, R. A.; Timmers, L. F. S. M.; Pauli, I.; Gava, L. M.; Ducati, R. G.; Basso, L. A.; Santos, D. S.; de Azevedo, W. F. J. Struct. Biol. 2010, 169, 379. https://doi.org/10.1016/j.jsb.2009.11.010
  28. Sugita, Y.; Okamoto, Y. Chem. Phys. Lett. 1999, 314, 141. https://doi.org/10.1016/S0009-2614(99)01123-9
  29. Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. J. Comput. Chem. 2005, 26, 1668. https://doi.org/10.1002/jcc.20290
  30. Onufriev, A.; Bashford, D.; Case, D. A. Proteins 2004, 55, 383. https://doi.org/10.1002/prot.20033
  31. Shell, M. S.; Ritterson, R.; Dill, K. A. J. Phys. Chem. B 2008, 112, 6878. https://doi.org/10.1021/jp800282x
  32. Ryckaert, A.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327. https://doi.org/10.1016/0021-9991(77)90098-5
  33. Zhang, W.; Wu, C.; Duan Y. J. Chem. Phys. 2005, 123, 154105. https://doi.org/10.1063/1.2056540
  34. Nguyen, P. H.; Li, M. S.; Stock, G.; Straub, J. E.; Thirumalai, D. P. Nat'l. Acad. Sci. U S A 2007, 104, 111. https://doi.org/10.1073/pnas.0607440104
  35. Thirumalai, D.; Klimov, D. K.; Dima, R. I. Curr. Opin. Struc. Biol. 2003, 13, 146. https://doi.org/10.1016/S0959-440X(03)00032-0

Cited by

  1. Besides Fibrillization: Putative Role of the Peptide Fragment 71–82 on the Structural and Assembly Behavior of α-Synuclein vol.53, pp.41, 2014, https://doi.org/10.1021/bi5008707
  2. Conformational Ensembles of α-Synuclein Derived Peptide with Different Osmolytes from Temperature Replica Exchange Sampling vol.11, pp.1662-453X, 2017, https://doi.org/10.3389/fnins.2017.00684