• Title/Summary/Keyword: Antioxidative enzymes

Search Result 298, Processing Time 0.037 seconds

Effects of Calcium and Nitrogen on the Growth and Antioxidative Enzyme Activity in Soybean (Glycine max) under Saline Condition

  • Bae, Jeong-Jin;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.29 no.2
    • /
    • pp.157-163
    • /
    • 2006
  • Growth of G. max treated with $NO_3^-$-N was decreased by high NaCl treatments, but $NH_4NO_3$-fed plants showed good growth with enhanced activity of antioxidative enzymes (SOD and APX). Especially, activity of APX was higher in 5 mM $NH_4NO_3$-fed plants than other types of N-supplied plants throughout the stress period. Higher SOD activity under salt stress was accompanied by increase in APX activity in 5 mM $NH_4NO_3$-fed plants. Similarly, application of calcium confirmed somewhat positive effects on growth. Salt-treated soybean plants showed the best growth response with the increase of SOD and APX activity at an additional 5 mM calcium treatment. Especially, the increase of SOD activity through the strengthened CuZn-SOD isoform was remarkable.

Effect of reactive oxygen species on floral senescence in Hibiscus syriacus L. (활성산소종이 무궁화 꽃의 노화에 미치는 영향)

  • Seo, Sang-Kyu;Kim, Sun-Hyung;Lee, Gung-Pyo;Kang, Seung-Won
    • Journal of Plant Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.179-183
    • /
    • 2009
  • To understand the effect of reactive oxygen species (ROS) on floral senescence in Hibiscus syriacus L., we have investigated change in relative water potential, malondialdehyde (MDA) content, H_2O_2 content and the activity of antioxidative enzymes in the petals during flower opening and senescence. Hibiscus flowers were achieved full bloom at early morning and started to in-rolling and showed petal in-rolling over than 50% at 24 h and 36 h after full bloom, respectively. The flower was a decrease in fresh weight by 30% and showed water loss with floral senescence. MDA content and activity of antioxidative enzymes such as APX, GR and CAT were showed no significant change until 36 h after full bloom. In the flower 48 h after full bloom that showed complete petal in-rolling and wilting, however, activity of antioxidative enzymes and H_2O_2 content was greatly increased as compared with 0 h after full bloom. These results suggest that reactive oxygen species are related to accelerating the later senescence more than inducing the early senescence during Hibiscus flower senescence.

Activity and Isozyme Profile of Antioxidative Enzymes at Booting Stage of Rice Treated with Cold Water

  • Kim Ki-Young;Kim Bo-Kyeong;Shin Mun-Sik;Choung Jin-Il;Ko Jae-Kweon;Kim Jung-Kon;Lim Jung-Hyun;Yun Song-Joon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.289-294
    • /
    • 2004
  • This study was carried out to investigate the antioxidative enzymes and isozymes between chilling-tolerant and -susceptible varieties at the booting stage under cold water stress $(13^{\circ}C)$ in japonica rice. Total SOD, CAT, POX, and GR activities on the basis of protein were found to be important factors to defend cold water stress. Especially, SOD and CAT activities showed distinctive differences between chilling-tolerant and -susceptible varieties. Chilling-tolerant varieties were higher than chilling-susceptible varieties for SOD and CAT activities. One of eight isozyme bands for SOD was a inducible isoform. Three isozymes for CAT and one isozyme for POX were closely correlated with defense to cold water stress. Total GR activities except Stejaree 45 on the basis fresh weight and POX were increased by cold water stress, but there was no difference between chilling-tolerant and -sus­ceptible varieties.

The Effect of Green Tea on the Lipid Composition of Serum and Liver and the Activities of Antioxidative Enzymes in Rats (녹차가 흰쥐의 혈청 및 간의 지질성분과 항산화계 효소 활성도에 미치는 영향)

  • 정희정;유영상
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.6 no.1
    • /
    • pp.41-49
    • /
    • 1996
  • This research was performed to Investigate the effects of green tea on the lipid composition of serum and liver and the specific activities of antioxidative enzymes. Male Sprague Dawley rats were fed 10% fat diet with lard and fish oil. Powdered green tea was added to the lard and fish oil diet at the level of 0.1% and 1%. After 6 weeks of feeding, serum and liver were obtained from experimental rats. Then we measured the concentration of total cholesterol, HDL-cholesterol and triglyceride. From liver cytosolic fraction, we analized the specific activities of superoxide dismutase, glutathione peroxidase and glutathione S-transferase. The level of total cholesterol and triglyceride were decreased and the ratio of HDL-cholesterol to total cholesterol was increased by the fish oil in the serum. But in the liver, the level of total cholesterol was increased by the fish oil and green tea than the lard. The specific activities of glutathione S-transferase were more increased in the fish oil than the lard. There was not effect of the green tea of daily dose on the lipid composition of serum and liver and the specific activities of antioxidative enzymes in rats.

  • PDF

Mechanisms of Chilling Tolerance in Relation to Antioxidative Enzymes in Rice

  • Kuk, Yong-In;Shin, Ji-San;Whang, Tay-Eak;Guh, Ja-Ock
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.341-351
    • /
    • 2002
  • In order to examine the mechanistic basis for differential sensitivities to chilling and subsequent recovery between two rice (Oryza sativa L.) cutivars, a chilling-tolerant japonica type (Ilpumbyeo) and a chilling-susceptible indica type (Taebaekbyeo), changes of physiological responses and antioxidant enzymes were investigated. Both cultivars at 3 leaf stage were exposed at a low temperature of $5^{\circ}C$ for 3 days and subsequently recovered in a growth chamber at a $25^{\circ}C$ for 5 days with 250 mmol $m^{-2}$ $s^{-1}$. Physiological parameters such as leaf fresh weight, relative water content, cellular leakage, lipid peroxidation, and chlorophyll a fluorescence showed that the chilling tolerant cultivar had a high tolerance during chilling. However, the chilling-susceptible cultivar revealed severe chilling damages. The chilling-tolerant cultivar was also faster in recovery than the chilling-susceptible cultivar in all parameters examined. We analyzed the activity and isozyme profiles of four antioxidant enzymes which are: superoxide dismutase (SOD), caltalase (CAT), ascorbate peroxidase (APX), and glutation reductase (GR). We observed that chilling-tolerance was due to a result of the induced or higher antioxidant enzyme system, CAT and APX in leaves and SOD, CAT, APX, and GR in roots. Especially, we observed the most significant differences between the chilling-tolerant cultivar and -susceptible cultivar in CAT and APX activity. Also in isozyme profiles, CAT and APX band intensity in the chilling-tolerant cultivar was distinctively higher than in the chilling-susceptible cultivars during chilling and recovery. Thus, the cold stability of CAT and APX are expected to contribute to a tolerance mechanism of chilling in rice plants. In addition, the antioxidative enzymes activity in roots may be more important than in that of leaves to protect chilling damage on rice plants.

Effects of Vitamin E Supplementation on Antioxidative Enzyme Activities in Liver KK Mice (비타민 E 보강식이가 KK마우스에서 간조직의 항산화계 효소 활성도에 미치는 영향)

  • 김해리;안현숙;서소영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.149-156
    • /
    • 1998
  • The purpose of this study was to investigate the effects of vitamin E supplementation on the activities of antioxidative enzymes in liver of KK mice of various ages and various duration of diabetes. Diabetes was induced by feeding high fat diet containing 20% corn oil(wt/wt). Weaned KK mice were fed high fat diet containing 51 IU or 2080 IU vitamin E per kg diet. Animals were sacrificed at 4, 6, and 9 months of age. In nondiabetic group, we found the decrease of antionxidative enzyme activities with aging. In diabetic group, antioxidative enzyme activities were decreased, and the change of hepatic vitamin E was related to glutathione peroxidase activity (r=0.71, p<0.001). Treatment with vitamin E did not modify the level of fasting blood glucose. However, it was observered that glutathione reductase and glutathione peroxidase activities as well as hepatic glutathione levels were increased by vitamie E supplementation, whereas catalase activity did not changed. The present result suggest that high vitamin E supplementation protects against lipid peroxidative damage in diabetic KK mice.

  • PDF

Effect of Dietary Fatty Acid and Vitamin E Supplementation in Antioxidant Systmes of the Second Generation Rat Brain Sections (식이지방산 조성 및 비타민 E의 보충이 제 2 세대 흰 쥐 뇌조직의 항산화 체계에 미치는 영향)

  • 황혜진;엄영숙;정은정;김수연;이양자
    • Journal of Nutrition and Health
    • /
    • v.34 no.1
    • /
    • pp.14-22
    • /
    • 2001
  • In this study, we examined the effects of dietary fatty acids and vitamin E supplementation on antioxidant systems in the rat brain regions. The Sprague Dawley rats were fed the experimental diets 3-4 wks prior to the conception. Experimental diet consisted of 10% fat(wt/wt) which were safflower oil(SO, poor in $\omega$3 fatty acids), mixed oil(MO, P/M/S ratio=1.03:1.45:1,$\omega$6/$\omega$3 ratio=6.3) and mixed oil supplemented with vitamin E(ME:MO+500mg vitamin E/kg diet). At 3 and 9 weeks of age of the newborn rats, frontal cortex(FC), corpus striatum(CS), hippocampus(H) cerebellum(CB) were dissected out from the whole brain. Activities of glutathione peroxidase(GSH-P(sub)x, superoxide dismutase(SOD) concentrations of malondialdehyde(MDA) were mesaured. Dietary fatty acids were not effective in antioxidative system for rat brain. However, when vitamin E was supplemented to the diet(ME), the activities of GSH-P(suh)x tended to increase in comparison to MO group. Therefore, the activites of GSH-P(suh)x of FC and H at the age of 3 weeks showed significant differences(p<0.05). The activities of Total-SOD tended to decrease in ME group compared to MO group. There were significant differences(p<0.05) in FC and CS at the age of 3 weeks. The activities of Mn-SOD tended to increase and Cu, Zn-SOD tended to decrease when vitamin E was supplemented. The activity levels of antioxidative enzymes at the age of 3 weeks and 9 weeks were similar. This suggested that the activity level of antioxidative enzymes reached to the adult level at the age of 3 weeks which is the end point of lactation period. The concentrations of MDA were not altered by experimental diets. When the activities of antioxidant enzymes were compared, the activities of antioxidant enzymes were the lowest in H and FC. In conclusion, the antioxidative system were not altered by dietary fatty acid at the age of 3 weeks and 9 weeks, but the supplementation of vitamin E altered the antioxidative systems. Therefore, these findings should be considered comprehensively in scope of the balance of various antioxidative systems and their interactions(Korean J Nutrition 34(1):14-22, 2001)

  • PDF

Changes of Growth and Antioxidative Enzyme(SOD, APX, GR) Activities of Spinach Beet(Beta vulgaris var. cicla) Under Saline Condition (염 환경하에서 근대(Beta vulgaris var. cicla)의 생장과 항산화효소(SOD, APX, GR)의 활성변화)

  • 배정진;추연식;송승달
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.658-667
    • /
    • 2003
  • Antioxidative enzymes (superoxide dismutase; SOD, ascorbate peroxidase; APX, glutathione reductase; GR) play major roles in scavenging mechanism of reactive oxygen species which were involved in various stress conditions including salt. In order to investigate the relation between their growth responses (dry weight) and the changes of antioxidative enzymes activity, salt-tolerant spinach beet having 15cm of shoot length were treated with various salt levels (0, 50, 200, 1000 mM NaCl) for 24 hours. Spinach beet exhibited an increase in the activity of antioxidative enzymes by salt, the maximal activity at 200 mM NaCl and the lowest activity at 50 mM NaCl in 2 hrs. after treatments. As a result of PAGE, it has been confirmed that spinach beet contained 3 isoforms (Fe-SOD, CuZn-SOD and Mn-SOD) of SOD and main isoform was CuZn- SOD form. In case of APX, isoforms of the low molecular weight(No. 7, 8) were showed strong expression especially at 200 and 400 mM NaCl treatment. Meanwhile, GR did not show specific pattern of isoforms among the salt treatments. Especially, in case of 50 mM treatment, plant showed the lowest activity of SOD with the best growth, a low enzyme activity was induced by inactivation of the Mn-SOD. Therefore, we suggested that the decrease of SOD activity at a low salt level (50 mM NaCl) or the increase of enzyme activity at a high salt level (200 mM NaCl) may be related to expression of the Mn-SOD isoform. These antioxidative enzymes showed the increase of activity in a short time by salt addition. So, it is considered that spinach beet copes effectively with a stressful condition such as salt by operating effective antioxidative defense mechanism rapidly under high salt level.

Antioxidative Effects of Scolopendra subspinipes (오공(蜈蚣)의 항산화효과에 관한 연구)

  • Choi, Yong-Keon;Lee, Dong-Dng;Kim, Geun-Woo;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.19 no.3
    • /
    • pp.129-142
    • /
    • 2008
  • Objective: The purpose of this study was to evaluate the antioxidative effects of the extract of Scolopendra subspinipes which has been used mainly for detoxication in the oriental medicine and reported to have sedative action, antiinflammatory effect, antihypertensive property and immunity enhancing activity. Method: Inhibitory activities on oxygen radical generating enzymes (aldehyde oxidase and xanthine oxidase) and increasing activities on oxygen radical scavenging enzymes (superoxide dismutase, glutathione peroxidase, glutathione-S-transferase) were investigated. Furthermore, the content of glutathione in the mouse brain, DPPH radical scavenging activity and also anti-lipid peroxidative effects in vivo and in vitro were estimated. Results: The extract showed weak inhibitory effects on the activities of aldehyde oxidase and xanthine oxidase which are oxygen radical generating enzymes. The extract inhibited lipid peroxidation with 26.1% against control group at 500 mg/kg in vivo and with 11.2% against control group at 10 mg/kg in vitro in a dose-dependent manner, which means this drug may protect radical-induced cell damages. The extract showed dose-dependently the scavenging effect on DPPH radical with 24.8% activity at 10 mg/ml in vitro. The extract enhanced the activities of superoxide dismutase, glutathione peroxidase and glutathione-S-transferase, which are oxygen radical scavenging enzymes, with 28.9%, 22.3% and 23.1%, respectively at 500mg/kg in vivo. Finally, this extract strongly increased the glutathione content in the mouse barin. Conclusion: Above results indicated that Scolopendra subspinipes can be useful for the protection or treatment of some diseases caused by reactive oxygen species.

  • PDF

Effects of Magnesium Deficiency on Induction of Activity of Antioxidative Enzymes (Magnesium 결핍이 항산화효소의 활성유도에 미치는 영향)

  • Kim, B.C.;Lee, J.J.
    • Korean Journal of Weed Science
    • /
    • v.17 no.4
    • /
    • pp.431-438
    • /
    • 1997
  • The influence of deficient(7${\mu}M$) and suffcient(1000${\mu}M$) magnesium(Mg) supply on the content of mg, chlorophyll, protein and the activity of superoxide dismutase(SOD), scavengers of superoxide radical($O_2$), and ascorbate peroxidase(AP), $H_2O_2$scavenging enzyme, and glutathione redutase(GR) were studied in pumpkin(Cudurbita moscata $D_{UCHESNE}$) plants over a 11-day period. Over the 11 days Period of growth in nutrient solution with sufficient and deficient Mg supply, the contents of Mg, chlorophyll protein and the activities of the antioxidative enzymes remained more or less constant in Mg-sufficient leaves. In Mg-deficient leaves, the contents of Mg, chlorophyll and protein was seriously decreased with time, however the activities of SOD, AP and GR highly enhanced compared to those of Mg-sufficient. The results indicated the stimulative effect of Mg deficiency on toxic oxygen species and scavenging enzymes in plants.

  • PDF