• Title/Summary/Keyword: Antioxidant responses

Search Result 254, Processing Time 0.034 seconds

Plasma Concentrations of Vitamins E and A, and Effects of Vitamin E Supplementation on Oxidative Stress and Immune Status in Korean Non-Insulin Dependent Diabetic Patients

  • Kim, Woo-Kyung;Park, Ock-Jin
    • Nutritional Sciences
    • /
    • v.1 no.1
    • /
    • pp.22-28
    • /
    • 1998
  • Plasma concentrations of Vitamins E and A were measured in 15 non-insulin dependent Korean female subjects and 15 age-matched normal subjects using reversed-phase high-performance liquid chromatography. No differences were found in plasma Vitamin E concentrations between the 2 groups. Plasma Vitamin A concentrations were higher in subjects with non-insulin dependent diabetes melitus (NIDDM). The effects were evaluated of 4 weeks of daily supplementation of 400 mg Vitamin E on plasma levels of these two vitamins. In addition, the effects were observed for Vitamin E supplementation on oxidative stress and immune-related compound productions in non-insulin dependent diabetic patients and control subjects. After treatment with Vitamin E, plasma Vitamin E concentrations were significantly elevated in both groups. Basal plasma thiobarbituric acid reactive substances (TBABS) were identical, and a decreased level of TBARS caused by Vitamin E was observed only in the diabetic group (0.02739$\pm$0.0024 versus 0.01814$\pm$0.0008 nmols malondialdehyde equivalents/dl plasma ; p<0.05). The basal and after-treatment levels of immunoglobulins A, G, M were identical in control and diabetic groups, indicating that Vitamin E did not appear to alter gross humoral responses in this study. However, elevation of Complement 3 ($C_3$) was noticed due to Vitamin E supplementation, revealing a possible effect of vitamin E on one aspect of humoral immunity, Furthermore, an increase in prostaglandin E_2 ($PGE_2$) levels in diabetic patients was normalized by Vitamin E supplementation. This suggests indirectly that the depressed cell-mediated response due to elevated $PGE_2$ could be normalized. For the definitive antioxidant intake recommendations for prevention and treatment of adverse effects of non-insulin dependent diabetes, evidence from intervention trials like this study should be collected. The present data suggests that Vitamin E may oxen some protective effects against oxidative damage and might have beneficial effects of partial immune-stimulation.

  • PDF

Effects of Daegangwhal-Tang Hot Aqueous Extract on Anti-inflammation and Anti-oxidation in RAW 264.7 Macrophage

  • Lee, Jae Sung;Jo, Na Young;Roh, Jeong Du;Lee, Cham Kyul;Lee, Eun Yong
    • Journal of Acupuncture Research
    • /
    • v.35 no.3
    • /
    • pp.115-119
    • /
    • 2018
  • Background: The objective of this study was to determine the effects of Daegangwhal-Tang (DGHT) hot aqueous extract on production of inflammatory mediators and antioxidants in RAW 264.7 macrophage. Methods: DGHT was extracted with water, filtered, concentrated and freeze-dried to perform. Cytotoxicity of DGHT extract was performed by MTT assay. Activated macrophages were treated with varying concentrations of DGHT extract (10, 50, 100 and $200{\mu}g/mL$), and nitric oxide (NO) and prostaglandin E2 ($PGE_2$) concentrations were measured to detect anti-oxidative effects. Interleukin-6 (IL-6), interleukin-1 beta ($IL-1{\beta}$) and tumor necrosis factor-alpha($TNF-{\alpha}$) concentrations were also measured to detect inflammatory responses to DGHT Results: Cytotoxicity of DGHT extract at concentrations of 10, 50, 100 and $200{\mu}g/mL$ were not observed. NO production was significantly decreased in the DGHT hot aqueous extract $200{\mu}g/mL$ concentration group. $PGE_2$, IL-6, $IL-1{\beta}$ and $TNF-{\alpha}$ production was significantly decreased in the DGHT hot aqueous extract 100 and $200{\mu}g/mL$ concentration groups. DGHT hot aqueous extract appeared to have DPPH free radical scavenging capability at all of concentrations, but did not exceed 50%. Conclusion: These results suggest that DGHT hot aqueous extract has concentration-dependent anti-inflammatory and anti-oxidative effect.

Responses of nutrient uptake, carbohydrates and antioxidants against low temperature in plants (저온에 대한 식물의 양분흡수, 탄수화물 및 항산화 반응 특성)

  • Lee, Suyeon;Jung, Jungah;Sung, Jwakyung;Ha, Sangkeun;Lee, Deogbae;Kim, Taewan;Song, Beomheon
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.2
    • /
    • pp.75-83
    • /
    • 2014
  • Recently, a quick drop of air temperature in plastic film houses by adverse weather conditions leads to the occurrence of low temperature damages to growing crops. Chilling injury, defined as a variety of growth restriction occurring below the optimal temperature, is one of environmental factors strongly affecting crop growth and yield. Low temperature causes the restricted evapotranspiration, reduced mineral uptake (P > K > $NO_3{^-}$), and an increase in electrolyte leakage such as K. Despite being different with plant species, an accumulation of soluble carbohydrates such as glucose, fructose, sucrose and starch under chilling condition is well known. A variety of environmental stresses are known to cause oxidative damage to plants either directly or indirectly by triggering an increased level of production of reactive oxygen species (ROS), and, to combat the oxidative damage, plants have the antioxidant defense systems comprising of enzymes, SOD, POD, CAT, GPX and APX, and non-enzymes, ascorbate, gluthathione, ${\alpha}$-tocopherol, phenolic compounds, carotenoid and flavonoids. The aim of this review is to provide basic information to build chilling-indicators and optimal nutrition management under adverse temperature conditions as broadly considering mineral uptake, carbohydrate metabolism and antioxidative defense system.

Evaluation of biochemical and free radical scavengers of Digitaria exilis L. under osmotic stress

  • Oyinade A., David;Oluwole, Osonubi;Jacob, Oyetunji Olusola
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.331-337
    • /
    • 2019
  • Digitaria exilis L. is an under-utilized crop with high nutritional and medicinal values. It thrives in and is well-adapted to arid areas with low soil nutrients. Using biochemical markers, this study investigates the mechanisms by which D. exilis responds to osmotic stress. Three accessions Dinat Iburua (DIN), Jakah Iburua (JAK) and Jiw Iburua (JIW) were collected from National Cereal Research Institute, Niger State. Two accessions, NG/11/JD/061 and NG/11/JD/062 were also collected from National Centre for Genetic Resources and Biotechnology, Ibadan. Murashige and Skoog medium of approximately 1.2 L was supplemented with polyethylene glycol 6000 to create osmotic pressures of -9.29, -13.93, -20.13, -26.32, -32.51, and 0 MPa (control). Sterilized seeds were inoculated in the medium and placed in the growth room for 4 weeks. Proline accumulation was significantly high in all JAK plants under osmotic stress. Proline and ascorbate peroxidase (p<0.05) activities were directly correlated, thus reinforcing the survivability of JAK during stress. Catalase (CAT) activity was also significantly induced in JAK under osmotic stress, which synergistically improved its tolerability. As a result, >50% of OH-, H2O2, and NO radicals were scavenged. However, other accessions including DIN, NG061, NG062, and JIW showed variations in their responses to different levels of osmotic stress, although not significant. Therefore, JAK possesses a well-equipped free radical quenching system that is protected by the accumulation of the osmolyte proline; therefore, accession JAK is considered osmotolerant. CAT and superoxide dismutase activities were osmostabilized against oxidative stress by proline.

Preventive Effects of Spirogyra neglecta and a Polysaccharide Extract against Dextran Sodium Sulfate Induced Colitis in Mice

  • Taya, Sirinya;Kakehashi, Anna;Wongpoomchai, Rawiwan;Gi, Min;Ishii, Naomi;Wanibuchi, Hideki
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2235-2245
    • /
    • 2016
  • Ulcerative colitis (UC) results from colonic epithelial barrier defects and impaired mucosal immune responses. In this study, we aimed to investigate the modifying effects of a Spirogyra neglecta extract (SNE), a polysaccharide extract (PE) and a chloroform fraction (CF) on dextran sodium sulfate (DSS)-induced colitis in mice and to determine the mechanisms. To induce colitis, ICR mice received 3% DSS in their drinking water for 7 days. Seven days preceding the DSS treatment, oral administration of SNE, PE and CF at doses of 50, 25 and 0.25 mg/kg body weight (low dose), 200, 100 and 1 mg/kg body weight (high dose) and vehicle was started and continued for 14 days. Histologic findings showed that DSS-induced damage of colonic epithelial structure and inflammation was attenuated in mice pre-treated with SNE, PE and CF. Furthermore, SNE and PE significantly protected colonic epithelial cells from DSS-induced cell cycle arrest, while SNE, PE and CF significantly diminished apoptosis. Proteome analysis demonstrated that SNE and PE might ameliorate DSS-induced colitis by inducing antioxidant enzymes, restoring impaired mitochondria function, and regulating inflammatory cytokines, proliferation and apoptosis. These results suggest that SNE and PE could prevent DSS-induced colitis in ICR mice by protection against and/or aiding recovery from damage to the colonic epithelium, reducing ROS and maintaining normal mitochondrial function and apoptosis.

Effect of Ginseng-Berry Extract on the Improvement of Blood Microcirculation and Skin Brightness (인삼열매 추출물의 혈행개선과 피부톤 개선에 미치는 영향)

  • Kim, Jeong-Kee;Kim, Byoung-Soo;Park, Chan-Woong;Seo, Dai-Bang;Yoo, Ho-Rhyong;Lee, Sang-Jun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.85-90
    • /
    • 2010
  • Several studies have demonstrated that ginseng-berry extract has several beneficial properties, including anti-inflammatory, antioxidant, and vasodilation properties. Ginseng-berry extract has also been shown to have the great potential against skin aging. Its beneficial mechanism against skin aging, however, has not been examined in detail. Also, the effects of ginseng-berry extract on microcirculation and skin cellular responses have not been investigated. Inhibition of skin microcirculation is the primary cause of many adverse biological effects, which is responsible for the skin aging and darkening. We investigated the beneficial effects of ginseng-berry extract on blood circulation, transcutaneous oxygen pressure in vivo model and also on skin microcirculation, cellular response and skin brightening effect in clinical trial. We found that oral administration of ginseng-berry extract markedly increased blood flow rate and transcutaneous $O_2$ pressure, but decreased transcutaneous $CO_2$ pressure. Also, it improved skin tone on cheeks, as is skin brighteness. These results suggest that ginseng-berry extract is a potent candidate for the treatment of skin aging and brightening by improving skin microcirculation.

Comparative Effects of Dietary Quercetin and Rutin in Rats Fed with the Lieber-DeCarli Ethanol Diet

  • Seo, Su-Jeong;Park, Cheol-Ho;Ko, In-Young;Jeong, Yeon-Ho;Choi, Yong-Soon
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.222-226
    • /
    • 2017
  • Flavonoids including quercetin and rutin are a group of naturally occurring compounds widely distributed in plants, especially in buckwheat. Thus, cereal and the leaf of the plant have increasingly used as a source of nutritional and functional foods such as noodle, cake or soup in Korea, Japan and other countries. This study investigated comparative effects of dietary rutin rich in buckwheat and its aglycone, quercetin, on serum biomarkers and antioxidant parameters in rats treated with chronic ethanol. Rats were fed with the liquid diets prepared by the method of Lieber Decarli. Serum alanine transaminase (ALT) and aspartate transaminase (AST) activities increased significantly by alcohol feeding. Dietary flavonoids including rutin, quercetin and their mixtures (1/1, v/v) decreased significantly the activities of serum ALT whereas the feeding of quercetin decreased only the activity of serum AST. The concentration of serum malondialdehydes elevated by chronic alcohol feeding decreased markedly in all the experimental groups that were fed with the flavonoids; however, the combined administration of quercetin or rutin, but not that of rutin or quercetin alone decreased significantly the concentration of liver malondialdehydes to the normal range in rats fed without ethanol. Our results suggested that dietary combined mixture of rutin and quercetin might be effective in ameliorating adverse responses seen in rats exposed to ethanol chronically.

Cross-Tolerance and Responses of Antioxidative Enzymes of Rice to Various Environmental Stresse

  • Kuk, Yong-In;Shin, Ji-San
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.264-273
    • /
    • 2007
  • In order to examine the cross-tolerance of two chilling-tolerant cultivars (Donganbyeo and Heukhyangbyeo) and two chilling-susceptible cultivars (Hyangmibyeo and Taekbaekbyeo) to salt, paraquat, and drought, changes of physiological response and antioxidant enzymes were investigated. The seedlings were grown in a growth chamber until the 4-leaf stage. The seedlings were exposed to chilling at $5^{\circ}C$ for 3 days. For drought treatment, the seedlings were subjected to drought by withholding water from plants for 5 days. For paraquat study, plants were sprayed with $300{\mu}M$ paraquat. For the salt stress, the seedlings were transferred to the Hoagland's nutrient solution containing 0.6% (w/v) NaCl for 4 days. Chilling-tolerant cultivars showed cross-tolerant to other stresses, salt, paraquat, and drought in physiological parameters, such as leaf injury, chlorophyll a fluorescence, and lipid peroxidation. The baseline levels of antioxidative enzyme activities, catalase (CAT) and peroxidase (POX) activities in chilling-tolerant cultivars were higher than in the chilling-susceptible cultivars. However, there were no differences in ascorbate peroxidase (APX) and glutathione reductase (GR) activities between chilling-tolerant and -susceptible cultivars in untreated control. CAT activity in chilling-tolerant cultivars was higher than that in chilling-susceptible cultivars during chilling, salt, and drought treatments, but not during paraquat treatment. However, other antioxidative enzymes, APX, POX, and GR activities showed no significant differences between chilling-tolerant and -susceptible cultivars during chilling, salt, paraquat, and drought treatments. Thus, it was assumed that CAT contribute to cross-tolerance mechanism of chilling, salt, and drought in rice plants.

Isolation of Eckol from Ecklonia cava via Centrifugal Partition Chromatography (CPC) and Characterization of it's Anti-inflammatory Activity (고속원심분배 크로마토그래피를 이용한 감태(Ecklonia cava)로부터 Eckol의 분리 및 항염증 활성)

  • Kim, Yoon Taek;Lee, Ji-Hyeok;Ko, Ju-Young;Oh, Jae-Young;Lee, Won-U;Sok, Chang Hyun;Hong, Jin Tae;Jeon, You-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.3
    • /
    • pp.301-307
    • /
    • 2015
  • Phlorotannins and marine algal polyphenols, including dieckol, 6,6-bieckol, phloroglucinol, phlorofucofuroeckol-A, and eckol, were isolated from brown seaweeds. These compounds have beneficial bioactivities, and Ecklonia cava has become widely used for the extraction and isolation of phlorotannins. Eckol, in particular, has been to shown to have antioxidant, anti-inflammatory, anticoagulatory, and photoprotective properties. However, due to its low abundance in weaweed, the isolation and purification of eckol are difficult. Its limited availability renders the isolation and purification of eckol labor-intensive processes. Centrifugal partition chromatography (CPC) is an efficient technique for the isolation and purification of eckol. In this study, eckol was isolated from the ethyl acetate fraction of the 70% ethanol extract of E. cava using CPC with a two-phase solvent system of a n-hexane:EtOAc:methanol:water (2:8:3:7, v/v) solution. The purity and anti-inflammatory activity of the isolated eckol were verified by high-performance liquid chromatography and by assaying lipopolysaccharide-induced inflammatory responses in an immortalized murine BV2 microglial cell line, respectively. In conclusion, CPC is a useful technique for simple and efficient isolation of eckol from E. cava.

Korean Red Ginseng alleviates neuroinflammation and promotes cell survival in the intermittent heat stress-induced rat brain by suppressing oxidative stress via estrogen receptor beta and brain-derived neurotrophic factor upregulation

  • Iqbal, Hamid;Kim, Si-Kwan;Cha, Kyu-Min;Jeong, Min-Sik;Ghosh, Prachetash;Rhee, Dong-kwon
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.593-602
    • /
    • 2020
  • Background: Heat stress orchestrates neurodegenerative disorders and results in the formation of reactive oxygen species that leads to cell death. Although the immunomodulatory effects of ginseng are well studied, the mechanism by which ginseng alleviates heat stress in the brain remains elusive. Methods: Rats were exposed to intermittent heat stress for 6 months, and brain samples were examined to elucidate survival and antiinflammatory effect after Korean Red Ginseng (KRG) treatment. Results: Intermittent long-term heat stress (ILTHS) upregulated the expression of cyclooxygenase 2 and inducible nitric oxide synthase, increasing infiltration of inflammatory cells (hematoxylin and eosin staining) and the level of proinflammatory cytokines [tumor necrosis factor α, interferon gamma (IFN-γ), interleukin (IL)-1β, IL-6], leading to cell death (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay) and elevated markers of oxidative stress damage (myeloperoxidase and malondialdehyde), resulting in the downregulation of antiapoptotic markers (Bcl-2 and Bcl-xL) and expression of estrogen receptor beta and brain-derived neurotrophic factor, key factors in regulating neuronal cell survival. In contrast, KRG mitigated ILTHS-induced release of proinflammatory mediators, upregulated the mRNA level of the antiinflammatory cytokine IL-10, and increased myeloperoxidase and malondialdehyde levels. In addition, KRG significantly decreased the expression of the proapoptotic marker (Bax), did not affect caspase-3 expression, but increased the expression of antiapoptotic markers (Bcl-2 and Bcl-xL). Furthermore, KRG significantly activated the expression of both estrogen receptor beta and brain-derived neurotrophic factor. Conclusion: ILTHS induced oxidative stress responses and inflammatory molecules, which can lead to impaired neurogenesis and ultimately neuronal death, whereas, KRG, being the antioxidant, inhibited neuronal damage and increased cell viability.