• Title/Summary/Keyword: Antioxidant Enzymes

Search Result 981, Processing Time 0.037 seconds

Protective Effect of Sasa borealis Leaf Extract on AAPH-Induced Oxidative Stress in LLC-PK1 Cells

  • Hwang, Ji-Young;Lee, Hee-Seob;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.12-17
    • /
    • 2011
  • This study was designed to investigate the protective effect of Sasa borealis leaf extract on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress in LLC-PK1 cells (porcine kidney epithelial cells). The butanol fraction from Sasa borealis leaf extract (SBBF) was used in this study because it possessed strong antioxidant activity and high yield among fractions. Exposure of LLC-PK1 cells to 1 mM AAPH for 24 hr resulted in a significant decrease in cell viability, but SBBF treatment protected LLC-PK1 cells from AAPH-induced cell damage in a dose dependant manner. To determine the protective action of SBBF against AAPH-induced damage of LLC-PK1 cells, we measured the effects of SBBF on lipid peroxidation and antioxidant enzymes activities of AAPH treated cells as well as scavenging activities on superoxide anion radical and hydroxyl radical. SBBF had a protective effect against the AAPH-induced LLC-PK1 cellular damage and decreased lipid peroxidation and increased activities of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. Furthermore, SBBF showed strong scavenging activity against superoxide anion radical. The $IC_{50}$ value of SBBF was $28.45{\pm}1.28\;{\mu}g/mL$ for superoxide anion radical scavenging activity. The SBBF also had high hydroxyl radical scavenging activity ($IC_{50}=31.09{\pm}3.08\;{\mu}g/mL$). These results indicate that SBBF protects AAPH-induced LLC-PK1 cells damage by inhibiting lipid peroxidation, increasing antioxidant enzyme activities and scavenging free radicals.

Changes in in vivo Lipid Peroxidation and Antioxidant Defense System in Streptozotocin-Induced Diabetic Rats: a Time Course Study (스트렙토조토신-당뇨쥐에서 지질과산화 및 항산화계의 경시적 변화)

  • 이수자;박수현;이혜성
    • Journal of Nutrition and Health
    • /
    • v.34 no.3
    • /
    • pp.253-264
    • /
    • 2001
  • This study was carried out to examine a part of the mechanism for the etiology of diabetic complications. Thirty normal and forty streptozotocin(STZ)-induced diabetic rats were used as the animal models. The animals were sacrificed at the time points of 3 days, 1,2,4 and 6 weeks after STZ-injection and a time course changes in the concentrations of thiobarbituric acid-reactive substances(TBARS) in blood, urine, and tissues, along with the levels of conjugated dienes in tissues were measured as indices of in vivo lipid peroxidation. The activities of antioxidant enzymes, catalase, superoxide dismutase, glutathione peroxidase and the levels of blood retinol and alpha-tocopherol were also measured. The diabetic rats maintained a slightly higher plasma TBARS level throughout the experiment. The urinary TBARS level was significantly higher in diabetic group and gradually increased with time. Concentrations of TBARS in liver, heart, and kidney tissues from diabetic animals were higher than those from the normal group. An increase of conjugated dienes was also observed in the all tissues examined. The kidney tissue of diabetic animals revealed more significant lipid peroxidation state than any other organ tissues. The activities of hepatic antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase were higher in diabetic animals compared to the control ones and increased with the duration of diabetes mellitus. The plasma levels of vitamin A and E were loser in diabetic animals than in normal controls throughout the experimental period. The level of vitamin E in diabetic animals was significantly decreased with the duration of the disease. The results of this study suggest that an effective regimen to suppress the adverse changes in lipid peroxidation and antioxidant defense system is required from the early stage of the disease to prevent the development of diabetic complications. (Korean J Nutrition 34(3) : 253∼264, 2001)

  • PDF

Enzyme hydrolysate of silk protein suppresses tert-butyl hydroperoxide-induced hepatotoxicity by enhancing antioxidant activity in rats

  • Suh, Hyung Joo;Kang, Bobin;Kim, Chae-Young;Choi, Hyeon-Son
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.550-558
    • /
    • 2017
  • The purpose of current study is to investigate the beneficial effect of enzyme (Alcalase) hydrolysates of silk protein in rat. Alcalase-treated silk protein hydrolysate (ATSH) itself did not show any cytotoxicity on the hepatic tissues and blood biochemistry, similar to the normal condition. ATSH played a protective role in tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity and liver damage. The values of AST (aspartate aminotransferase) and ALT (alanine aminotransferase), which are the indicators of the liver function, were effectively alleviated with the ATSH treatment in a dose dependent manner. The level of Lactate dehydrogenase (LDH) and Malondialdehyde (MDA), which were increased with t-BHP treatment, were significantly reduced by ATSH. High dose of ATSH (2 g/kg) reduced the t-BHP-induced LDH release by 48%. Antioxidant and antioxidant enzymes in liver cells were significantly increased by ATSH treatment in their level and activities. ATSH (2 g/kg) increased glutathione (GSH), an intracelluar antioxidant, by 2.5-fold compared with the t-BHP treated group. The activities of glutathione-s-transferase (GST), superoxide dismutase (SOD), and catalase were also elevated by 38%, 60%, and 45%, respectively, with ATSH (2 g/kg) treatment. The antioxidative effect of ATSH was recapitulated to the protection from t-BHP induced liver damages in hematoxylin and eosin (H&E) staining. Thus, ATSH might be used as a hepatoprotective agent.

Effects of Soybean Peptide Intake on Antioxidant Enzyme, Cortisol and Inflammatory Cytokines in High School Judo Athletes

  • Bae, Su-Jung;Lee, Da-Kyoung;Son, Chang-Seob;Lee, Hye-Sook;Lee, Jang-Woon;Lee, Yoon-Bok;Yoo, Yung-Choon;Park, Jin-Hong;Hong, Seung-Bok;Hwang, Seock-Yeon
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • The purpose of this study was to investigate the effect of soybean peptide on antioxidant enzymes, cortisol hormone and inflammatory cytokine levels. 19 high school male judo athletes participated in the experiments. They were randomly divided into two groups, one group took soybean peptide (S-peptide, n=10) 4 g a day for 4 weeks and the other group placebo (placebo group, n=9) for the same time. Blood samples were collected before intake, after 2 weeks intake and 4 weeks intake and these were analyzed for total antioxidant status (TAS), catalase (CAT), levels of cortisol hormone, tumor necrosis factor-alpha (TNF-${\alpha}$) and interleukin-6 (IL-6). As a result, the S-peptide group was significantly increased in TAS and CAT (P<0.05). The malondialdehyde (MDA) levels showed decrease after soybean peptide intake but there was no significant difference. In the levels of plasma cortisol which reflect stress status, there was significantly decreased in the S-peptide and placebo group after 4 weeks (P<0.05). There were significant decreases of TNF-${\alpha}$ and IL-6 after 4 weeks in S-peptide group (P<0.05). These results suggest that the intake of soybean peptide can activate antioxidant defenses and decrease exercise-induced oxidative stress.

Proline, Sugars, and Antioxidant Enzymes Respond to Drought Stress in the Leaves of Strawberry Plants

  • Sun, Cunhua;Li, Xuehua;Hu, Yulong;Zhao, Pingyi;Xu, Tian;Sun, Jian;Gao, Xiali
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.625-632
    • /
    • 2015
  • Drought is a severe abiotic stress that affects global crop production. A drought model was created for 'Toyonoka' Fragaria ${\times}$ ananassa, and the effects of drought stress on contents of proline, sugars, and antioxidant enzyme activities were investigated. Strawberry transplants with identical growth were chosen for the experiments and the randomized design included four replications (10 plants per block). The experimental sets differed in the moisture level of the culture medium relative to the range of moisture content as follows: control, 70-85%; mild drought stress, 50-60%; moderate drought stress, 40-50%; and severe drought stress, 30-40%. Drought stress was imposed by limiting irrigation. Plants were sampled and physiological parameters w ere measured on 0, 2, 4, 6, 8, and 10 days after the commencement of droughts tress. The water potential of strawberry leaves decreased in the plants under mild, moderate, and severe stress during the course of the water stress treatment and exhibited a significant difference from the control. Strawberry leaves subjected to drought stress had higher accumulation of proline, sugars, and malondialdehyde, and higher activities of superoxide dismutase, peroxidase, and catalase than leaves of control plants. Malondialdehyde levels increased in parallel with the severity and duration of drought stress. By contrast, antioxidant enzyme activity displayed dynamic responses to drought stress, first increasing and subsequently decreasing as the severity and duration of drought stress increased. These results suggest that strawberry plants respond to drought stress by altering the activities of antioxidant enzymes and the levels of osmotically active metabolites. These biochemical response changes may confer adaptation to drought stress and improve the capacity of plants to withstand water-deficit conditions.

Effects of Green Tea Powder or Antioxidant Vitamin Supplementation on Lipid Peroxidation and Antioxidant Enzyme Activities in 9 Month- and 12 Month-old Rat Brain Regions (녹차 건분이나 항산화 비타민 보충이 9개월령과 12개월령 흰쥐의 부위별 뇌조직에 미치는 항산화 효과)

  • 장남수;최지형
    • Journal of Nutrition and Health
    • /
    • v.35 no.4
    • /
    • pp.431-438
    • /
    • 2002
  • This study was performed to investigate the effects of green tea or antioxidant vitamins on lipid peroxidation and antioxidant enzyme system in various regions of rat brain aged 9 and 12 months. Male Sprague-Dawley rats were raised on the experimental diets; 3% green tea powder diet, antioxidant vitamins diet containing the $\beta$-carotene, vitamin C, vitamin E in the level same as in the 3% green tea powder diet, and control diet far 3 weeks. We measured concentrations of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD), catalase, and glutathione peroxide (GSH-Px) in various brain regions such as cortex, cerebellum, striatum, and hippocampus. Green tea powder or antioxidant vitamin supplementation decreased MDA concentrations in the striatum and the hippocampus, and increased SOB activities in the striatum, and GSH-Px activities in the cortex. There was no significant difference in the observed antioxidative effects between the green tea powder and antioxidant vitamin supplementation. A significant difference between 9 month- and 12 month-old rats was found in MDA concentrations and GSH-Px activities in all brain regions. These results suggest that green tea powder can have protective effects on various regions of rat brain and that these effects on lipid peroxidation and antioxidant enzymes are different by age. In inhibiting lipid peroxidation, there was no difference between green tea powder and antioxidant vitamins.

Effect of Dietary Fatty Acid and Vitamin E Supplementation in Antioxidant Systmes of the Second Generation Rat Brain Sections (식이지방산 조성 및 비타민 E의 보충이 제 2 세대 흰 쥐 뇌조직의 항산화 체계에 미치는 영향)

  • 황혜진;엄영숙;정은정;김수연;이양자
    • Journal of Nutrition and Health
    • /
    • v.34 no.1
    • /
    • pp.14-22
    • /
    • 2001
  • In this study, we examined the effects of dietary fatty acids and vitamin E supplementation on antioxidant systems in the rat brain regions. The Sprague Dawley rats were fed the experimental diets 3-4 wks prior to the conception. Experimental diet consisted of 10% fat(wt/wt) which were safflower oil(SO, poor in $\omega$3 fatty acids), mixed oil(MO, P/M/S ratio=1.03:1.45:1,$\omega$6/$\omega$3 ratio=6.3) and mixed oil supplemented with vitamin E(ME:MO+500mg vitamin E/kg diet). At 3 and 9 weeks of age of the newborn rats, frontal cortex(FC), corpus striatum(CS), hippocampus(H) cerebellum(CB) were dissected out from the whole brain. Activities of glutathione peroxidase(GSH-P(sub)x, superoxide dismutase(SOD) concentrations of malondialdehyde(MDA) were mesaured. Dietary fatty acids were not effective in antioxidative system for rat brain. However, when vitamin E was supplemented to the diet(ME), the activities of GSH-P(suh)x tended to increase in comparison to MO group. Therefore, the activites of GSH-P(suh)x of FC and H at the age of 3 weeks showed significant differences(p<0.05). The activities of Total-SOD tended to decrease in ME group compared to MO group. There were significant differences(p<0.05) in FC and CS at the age of 3 weeks. The activities of Mn-SOD tended to increase and Cu, Zn-SOD tended to decrease when vitamin E was supplemented. The activity levels of antioxidative enzymes at the age of 3 weeks and 9 weeks were similar. This suggested that the activity level of antioxidative enzymes reached to the adult level at the age of 3 weeks which is the end point of lactation period. The concentrations of MDA were not altered by experimental diets. When the activities of antioxidant enzymes were compared, the activities of antioxidant enzymes were the lowest in H and FC. In conclusion, the antioxidative system were not altered by dietary fatty acid at the age of 3 weeks and 9 weeks, but the supplementation of vitamin E altered the antioxidative systems. Therefore, these findings should be considered comprehensively in scope of the balance of various antioxidative systems and their interactions(Korean J Nutrition 34(1):14-22, 2001)

  • PDF

Changes in Antioxidant and Antioxidant Enzymes Activities of Soybean Leaves Subjected to Water Stress (대두에서 수분스트레스에 의한 항산화제와 항산화효소의 활성도 변화)

  • Kang, Sang-Jae;Park, Woo-Churl;Kim, Tae-Sung
    • Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.246-251
    • /
    • 1999
  • This experiment was carried out to elucidate and investigate the changes in the content of antioxidants and the activities of antioxidant enzymes in the leaves of soybean subjected to water stresses. The results obtained were as follows; Leaves of soybeans subjected to water stresses have showed the differences in the activities of the antioxidant enzymes. In eunhakong, the activity of APOX was increased within a few days, but that of GR was decreased, whereas the activities of APOX and GR were gradually decreased in eunhakong. The activity of MDHAR of the leaves of eunhakong subjected to drought stress was gradually increased within 4days, whereas that of flooding was increased within 2days. We are supposed that the activities of APOX and MDHAR are coupled to maintain ascorbate concentration. In eunhakong, the relative activity of DHAR subjected to flooding was higher than that of drought. These results imply that DHAR is the only enzyme participating in the regeneration of ascorbate when the activity of MDHAR was limited by the deficiency of NADPH. The contents of ascorbate and reduced glutathione subjected to drought stress decreased continually, whereas those subjected to flooding stress recovered after five days of treatment.

  • PDF

Effect of Styrene on Hepatic Activities of Antioxidant Enzymes in Rats (스티렌이 흰쥐의 간 조직 중 항산화계 효소 활성에 미치는 영향)

  • Lee, Jong-Ryol;Kim, Dong Hun;Lee, Sang-Min
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.678-687
    • /
    • 2021
  • Styrene is a commercially important chemical used mainly in the production of raw materials and plastics. To determine the effect of styrene on hepatic activities of antioxidant enzymes, styrene was treated to Sprague-Dawley rats at 50 mg/kg, 200 mg/kg and 400 mg/kg (i.p) twice a day for 4 days. There were determined the significantly increased activities of serum AST (aspartate aminotransferase), ALT (alanine aminotransferse), and the increased content of MDA (malondialdehyde) at the dose of 400 mg/kg compared to the control. The hepatic activities of XO (xanthine oxidase) and CYPdAH (cytochrome P450 dependant aniline oxidase) in the dose of 400 mg/kg compared to the dose of 200 mg/kg were more increased, which means the excessive ROS (reactive oxygen species)s were produced during Phase I. In addition, significantly decreased were rates of the hepatic activities of GPx (glutathione peroxidase), CAT (catalase), SOD (superoxide dismutase) and GST (glutathione S-transferase) at the dose of 400 mg/kg compared to the control. And, the group at the dose of 400 mg/kg showed more significantly decreased GSH (glutathione) level than the group at the dose of 200 mg/kg. The decrease in GSH could ascribe to the toxic metabolites of styrene, such as styrene oxide. In conclusion, these results indicate that the excessive ROSs and the toxic metabolites of styrene may result in the hepatotoxicity, and be related to their imbalanced activities for antioxidant enzymes.

Effect of Myricetin on mRNA Expression of Different Antioxidant Enzymes in B16F10 Murine Melanoma Cells (B16F10 Murine Melanoma Cell에서 Myricetin이 항산화효소의 m-RNA 발현에 미치는 영향)

  • Yu Ji Sun;Kim An Keun
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.86-91
    • /
    • 2005
  • Flavonoids are class of polyphenolic compounds widely distributed in the plant kingdom, which display a variety of biological activities, including antiviral, antithrombotic, antiinflammatory, antihistaminic, antioxidant and free-radica 1 scavenging abilities. The antioxidant enzyme (AOE) system plays an important role in the defense against oxidative stress insults. To determine whether flavonoid, myricetin can exert antioxidative effects not only directly by modulating the AOE system but also scavenging free radical, we investigated the influence of the flavonoid myricetin on cell viability, different antioxidant enzyme activities, ROS level and the expression of different antioxidant emzyme in B16F10 murine melanoma cells. Myricetin in a concentration range from 6.25 to $50\;{\mu}M$ decreased superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities, but catalase (CAT) activity was increased. In the myricetin-treated group, ROS levels were decreased dose-dependently. Antioxidant enzyme expression was measured by RT-PCR. Myricetin treatment of B16F10 cells increased catalase expression. Expression levels of copper zinc superoxide dismutase (CuZn SOD) were not affected by exposure of myricetin. Manganese superoxide dismutase (Mn SOD) and GPx expression levels decreased slightly after myricetin treatment. In conclusion, the antioxidant capacity of myricetin was due to CAT and free-radical scavenging.