• 제목/요약/키워드: Antimicrobial resistance genes

검색결과 178건 처리시간 0.023초

Phenotypic and Genotypic Differences of the Vancomycin-Resistant Enterococcus faecium Isolates from Humans and Poultry in Korea

  • Oh, Jae-Young;An, Seung-Hun;Jin, Jong-Sook;Lee, Yoo-Chul;Cho, Dong-Teak;Lee, Je-Chul
    • Journal of Microbiology
    • /
    • 제45권5호
    • /
    • pp.466-472
    • /
    • 2007
  • A total of 98 vancomycin-resistant Enterococcus faecium (VREF) isolates (58 isolates from patients and 40 isolates from poultry) were compared based on their antimicrobial susceptibility, Tn1546 element organization, and pulsed-field gel electrophoresis (PFGE) patterns. This comparison aided in determining the relationships between the groups of isolates. All the VREF isolates harbored the vanA gene; however, 29 (29.6%) of the isolates exhibited the VanB phenotype-vanA genotype. Furthermore, the VREF isolates from humans and poultry exhibited distinct antimicrobial resistance patterns. The PCR mapping of the Tn1546 elements exhibited 12 different transposon types (A to L). The VREF isolates of poultry were classified into types A to D, whereas the human isolates were classified into types E to L. A PFGE analysis demonstrated a high degree of clonal heterogeneity in both groups of isolates; however, the distinct VREF clones appeared in each group of isolates. The deletion of the vanX-vanY genes or insertion of IS1216V in the intergenic region from the vanX-vanY genes is directly associated with the incongruence of the VanB phenotype-vanA genotype in human VREF isolates. These data suggest that the VREF isolates exhibit distinct phenotypic and genotypic traits according to their origins, which suggests that no evidence exists to substantiate the clonal spread or transfer of vancomycin resistance determinants between humans and poultry.

Characterization and Zoonotic Potential of Uropathogenic Escherichia coli Isolated from Dogs

  • Nam, Eui-Hwa;Ko, Sungjin;Chae, Joon-Seok;Hwang, Cheol-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.422-429
    • /
    • 2013
  • The aim of this study was to investigate the characteristics of canine uropathogenic Escherichia coli (UPEC) and the interaction between canine UPEC and human bladder epithelial cells. Ten E. coli isolates collected from dogs with cystitis were analyzed for antimicrobial resistance patterns, the presence of virulence factors, and biofilm formation. The ability of these isolates to induce cytotoxicity, invade human bladder epithelial cells, and stimulate an immune response was also determined. We observed a high rate of antimicrobial resistance among canine UPEC isolates. All virulence genes tested (including adhesins, iron acquisition, and protectin), except toxin genes, were detected among the canine UPEC isolates. We found that all isolates showed varying degrees of biofilm formation (mean, 0.26; range, 0.07 to 0.82), using a microtiter plate assay to evaluate biofilm formation by the isolates. Cytotoxicity to human bladder epithelial cells by the canine UPEC isolates increased in a time-dependent manner, with a 56.9% and 36.1% reduction in cell viability compared with the control at 6 and 9 h of incubation, respectively. We found that most canine UPEC isolates were able to invade human bladder epithelial cells. The interaction between these isolates and human bladder epithelial cells strongly induced the production of proinflammatory cytokines such as IL-6 and IL-8. We demonstrated that canine UPEC isolates can interact with human bladder epithelial cells, although the detailed mechanisms remain unknown. The results suggest that canine UPEC isolates, rather than dogspecific pathogens, have zoonotic potential.

Comparative Analyses of Four Complete Genomes in Pseudomonas amygdali Revealed Differential Adaptation to Hostile Environments and Secretion Systems

  • Jung, Hyejung;Kim, Hong-Seop;Han, Gil;Park, Jungwook;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제38권2호
    • /
    • pp.167-174
    • /
    • 2022
  • Pseudomonas amygdali is a hemibiotrophic phytopathogen that causes disease in woody and herbaceous plants. Complete genomes of four P. amygdali pathovars were comparatively analyzed to decipher the impact of genomic diversity on host colonization. The pan-genome indicated that 3,928 core genes are conserved among pathovars, while 504-1,009 are unique to specific pathovars. The unique genome contained many mobile elements and exhibited a functional distribution different from the core genome. Genes involved in O-antigen biosynthesis and antimicrobial peptide resistance were significantly enriched for adaptation to hostile environments. While the type III secretion system was distributed in the core genome, unique genomes revealed a different organization of secretion systems as follows: type I in pv. tabaci, type II in pv. japonicus, type IV in pv. morsprunorum, and type VI in pv. lachrymans. These findings provide genetic insight into the dynamic interactions of the bacteria with plant hosts.

Complete Genome Sequence of Chryseobacterium mulctrae KACC 21234T : A Potential Proteolytic and Lipolytic Bacteria Isolated from Bovine Raw Milk

  • Elnar, Arxel G.;Kim, Geun-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • 제40권2호
    • /
    • pp.86-91
    • /
    • 2022
  • Chryseobacterium mulctrae KACC 21234T is a novel species isolated from raw bovine milk. Psychrotrophic bacteria are considered contaminants and are hypothesized to originate from the environment. In this investigation, the C. mulctrae KACC 21234T genome was determined to be 4,868,651 bp long and assembled into four contigs with a G+C ratio of 33.8%. In silico genomic analyses revealed the presence of genes encoding proteases (endopeptidase Clp, oligopeptidase b, carboxypeptidase) and lipases (phospholipase A(2), phospholipase C, acylglycerol lipase) that can catalyze the degradation of the proteins and lipids in milk, causing its quality to deteriorate. Additionally, antimicrobial resistance and putative bacteriocin genes were detected, potentially intensifying the pathogenicity of the strain. The genomic evidence presented highlights the need for improved screening protocols to minimize the potential contamination of milk by proteolytic and lipolytic psychrotrophic bacteria.

가금병원성대장균의 항생제 내성 및 분자유전학적 역학분석

  • 성명숙;윤미영;선정원;김진현;하종수;설성용;김기석
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2006년도 제23차 정기총회 및 학술발표회
    • /
    • pp.92-93
    • /
    • 2006
  • This study was conducted to investigate O group serotyping, antimicrobial drug resistance and distribution of extended spectrum ${\beta}$-lactamase of 203 Escherichia coli(E. coli) isolated from poultry in Korea during the period from April in 2003 to December 2005. The serogroup of 69.4% of isolates was determinated ; O 78(32.5%), O88(7.9%). O15(6.9%) and O141(6.4%) were the most common. These E. coli isolates showed resistance to nalidixic acid(92.6%), streptomycin(81.8%), ampicillin(77.3%), ciprofloxacin(70.9%), sulfisoxazole(66.5%) and trimethoprim(58.1%), respectively. The bla CTX$_{-M-3\;like}$(2 strains) and bla$\;_{CMY-2}$(2 strains) genes producing extended spectrum ${\beta}$ - lactamase(ESBL) were detected in four wild strains resistant to the third generation cephalosporin, respectively. The presence of the ESBL genes was confirmed in all transconjugants by PCR analysis with primers encoding CTX-M-3 like types or CMY-2.

  • PDF

피부 궤양이 발생한 금붕어(Carassius auratus)에서 분리한 Aeromonas veronii의 특성 및 병원성 분석 (A study on the characteristics and pathogenicity of Aeromonas veronii isolated from infected goldfish (Carassius auratus))

  • 정현기;김민수;김석호;최민순
    • 한국어병학회지
    • /
    • 제37권1호
    • /
    • pp.79-88
    • /
    • 2024
  • Aeromonas spp. 감염은 관상어 산업뿐만 아니라 양식업에서도 상당한 경제적 손실을 초래하는 것으로 보고되고 있다. 한편 2022년 12월부터 2023년 1월 사이에 국내에서 사육중인 금붕어(Crassius auratus)에서 Aeromonas병증을 보이는 어체에 대해서 발병 원인균을 규명하기 위해서 조사 하였다. 병증을 보이는 금붕어의 피부와 내부 장기에서 그람 음성균이 분리되었다. Biochemical test와 16S rRNA gene으로는 Aeromonas 속까지 동정할 수 있었으나 종레벨까지는 구분하기 어려웠다. 이에 가장 상동성이 높았던 A.veronii를 대상으로 species-specific PCR을 수행했고 명확히 종 수준으로 동정할 수 있었다. 아울러서 장독소 유전자, 감염 실험 및 항생제 내성 분석을 수행하였다. 금붕어에 대한 균주의 생체 내 병원성 시험 결과, 실험 주사 후 일주일 이내에 감염된 숙주에서 100%의 치사율을 나타냈다. 장독소 유전자인 act 독력 유전자가 검출되었다. 균주의 항균제 감수성 분석 결과 대부분의 항균제에 감수성을 보였으나, Ampicillin, Imipenem, Meropenem 및 Clindamycin 약제에는 내성을 보였다.

Enhancement of antimicrobial peptide genes expression in Cactus mutated Bombyx mori cells by CRISPR/Cas9

  • Park, Jong Woo;Yu, Jeong Hee;Kim, Seong-Wan;Kweon, Hae Yong;Choi, Kwang-Ho;Kim, Seong-Ryul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제37권1호
    • /
    • pp.21-28
    • /
    • 2018
  • CRISPR/Cas9 gene editing system is an efficient method to mutation in a sequence specific manner. Here we report the direct transfection of the Cas9 nuclease and gene specific guide RNA can be used in BM-N cell line derived from Bombyx mori ovarian tissue to enfeeble function of endogenous gene in vitro. We have used gene editing system to negative regulation components of major signaling cascade, the Toll pathway, which controls B. mori resistance to microbe infections, such as fungi and gram positive bacteria. We demonstrate that the $I{\kappa}B-like$ protein Cactus may controls the activation of transcription factors such as Rel A and Rel B. The direct transfection of Cas9 nuclease and Cactus-specific guide-RNA complex may be used in BM-N cells to disrupt the function of endogenous genes in vitro. A mutation frequency of 30-40% was observed in the transfected cells, and various mutations caused the target region. Moreover, RT-PCR analysis revealed that Cactus gene was down regulated after these mutations. More importantly, mutation of BmCactus stimulated expression of lysozyme, moricin, and lebocin genes. These results suggest that the CRISPR/Cas9 systems are expected to efficiently induce site-specific mutations and it was possible to produce antimicrobial peptide through the gene editing.

Bacteriocinogenic Potential of Newly Isolated Strains of Enterococcus faecium and Enterococcus faecalis from Dairy Products of Pakistan

  • Javed, Imran;Ahmed, Safia;Ali, Muhammad Ishtiaq;Ahmad, Bashir;Ghumro, Pir Bux;Hameed, Abdul;Chaudry, Ghulam Jilani
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권1호
    • /
    • pp.153-160
    • /
    • 2010
  • The present study was carried out for the isolation of bacteriocin-producing enterococci from indigenous sources. Gram-positive enterococci are known for having the ability to produce enterocins with good antimicrobial potential. A total of 34 strains were isolated from processed dairy products of Pakistan and seven out of them were found to be member of genus Enterococcus on selective enumeration. Biochemical and molecular characterization revealed that four of these isolates (IJ-03, IJ-07, IJ-11, and IJ-12) were Enterococcus faecalis and three (IJ-06, IJ-21, and IJ-31) were Enterococcus faecium. Local processed cheese was the source of all enterococcal isolates, except E. faecium IJ-21 and IJ-31, which were isolated from indigenous yoghurt and butter samples, respectively. Bacterial isolates were sensitive to commonly used antibiotics except methicillin and kanamycin. They also lacked critical virulence determinants, mainly cytolysin (cyl), gelatinase (gel), enterococcal surface protein (esp), and vancomycin resistance (vanA and vanB). Polymerase chain reaction amplification identified that enterocin A and P genes were present in the genome of E. faecium IJ-06 and IJ-21, whereas the E. faecium IJ-31 genome showed only enterocin P genes. No amplification was observed for genes that corresponded with the enterocins 31, AS-48, L50A, and L50B, and ent 1071A and 1071B. There were no signals of amplification found for E. faecalis IJ-11, indicating that the antimicrobial activity was because of an enterocin different from those checked by PCR. Hence, the indigenous bacterial isolates have great potential for bacteriocin production and they had antibacterial activity against a variety of closely related species.

Relationship between biofilm formation and the antimicrobial resistance in the Staphylococcus spp. isolated from animal and air

  • Seo, Yeon-Soo;Lee, Deog Young;Kang, Mi Lan;Lee, Won Jung;Yoo, Han Sang
    • 대한수의학회지
    • /
    • 제49권3호
    • /
    • pp.231-236
    • /
    • 2009
  • Biofilm has been described as a barrier, which produced by microorganisms to survive and protect themselves against various environments, like antibiotic agents. Staphylococcus spp. is a common cause of nosocomial and environmental infection. Thirty-six and thirty-five Staphylococci were isolated from animals and air, respectively. Based on the biofilm forming ability of the bacterium reported in our previous report, relationship between biofilm formation and antibiotic-resistance was investigated in this study. Regarding antibiotics susceptibility, cefazolin was the most effective agent to the bacteria. Strong biofilm-forming Staphylococcus spp. isolates might have a higher antibiotic resistance than weak biofilm isolates regardless of the presence of antibiotic resistance genes (p < 0.05). This result suggested that the chemical complexity of the biofilm might increase the antibiotic resistance due to the decrease of antibiotic diffusion into cells through the extensive matrix.

Methicillin resistant staphylococcus aureus에 대한 지유산의 항균활성 (Antibacterial Activity of JiYu-san Against Methicillin-resistant Staphylococcus aureus)

  • 황해;강옥화;권동렬
    • 생약학회지
    • /
    • 제53권2호
    • /
    • pp.87-95
    • /
    • 2022
  • Methicillin resistance Staphylococcus aureus (MRSA) is a gram-positive bacterium, the most commonly isolated bacterial human pathogen. JiYu-san is one of the natural products used to treat diseases in the folk recipe. In this study, we investigated the antimicrobial activity of EtOH 70% extracts of JiYu-san (JYS) against MRSA. The antibacterial activity of JYS against MRSA strain was evaluated using minimum inhibitory concentration (MIC), checkerboard dilution test, and time-kill assay. The effect of JYS on the immune mechanism of MRSA was confirmed through cell membrane permeability tests and energy metabolism tests, and the antibacterial activity mechanism was performed using qRT-PCR and western blot. As a result, in the antibacterial test of JYS, the MIC was measured to be 1.9~1000 ㎍/mL, and synergistic or showed a partial synergistic effect. In addition, JYS showed antibacterial activity in a combination test with DCCD or TX-100. In a study on the mechanism of action of antibacterial activity, it was found that JYS suppressed MRSA resistance genes and proteins. These results suggest that JYS has antibacterial activity and provides great potential as a natural antibiotic by modulating the immune mechanism against MRSA.