Phenotypic and Genotypic Differences of the Vancomycin-Resistant Enterococcus faecium Isolates from Humans and Poultry in Korea

  • Oh, Jae-Young (Department of Microbiology, Kyungpook National University School of Medicine) ;
  • An, Seung-Hun (Department of Microbiology, Kyungpook National University School of Medicine) ;
  • Jin, Jong-Sook (Department of Microbiology, Kyungpook National University School of Medicine) ;
  • Lee, Yoo-Chul (Department of Microbiology, Kyungpook National University School of Medicine) ;
  • Cho, Dong-Teak (Department of Microbiology, Kyungpook National University School of Medicine) ;
  • Lee, Je-Chul (Department of Microbiology, Kyungpook National University School of Medicine)
  • Published : 2007.10.30

Abstract

A total of 98 vancomycin-resistant Enterococcus faecium (VREF) isolates (58 isolates from patients and 40 isolates from poultry) were compared based on their antimicrobial susceptibility, Tn1546 element organization, and pulsed-field gel electrophoresis (PFGE) patterns. This comparison aided in determining the relationships between the groups of isolates. All the VREF isolates harbored the vanA gene; however, 29 (29.6%) of the isolates exhibited the VanB phenotype-vanA genotype. Furthermore, the VREF isolates from humans and poultry exhibited distinct antimicrobial resistance patterns. The PCR mapping of the Tn1546 elements exhibited 12 different transposon types (A to L). The VREF isolates of poultry were classified into types A to D, whereas the human isolates were classified into types E to L. A PFGE analysis demonstrated a high degree of clonal heterogeneity in both groups of isolates; however, the distinct VREF clones appeared in each group of isolates. The deletion of the vanX-vanY genes or insertion of IS1216V in the intergenic region from the vanX-vanY genes is directly associated with the incongruence of the VanB phenotype-vanA genotype in human VREF isolates. These data suggest that the VREF isolates exhibit distinct phenotypic and genotypic traits according to their origins, which suggests that no evidence exists to substantiate the clonal spread or transfer of vancomycin resistance determinants between humans and poultry.

Keywords

References

  1. Arthur, M., C. Molinas, F. Depardieu, and P. Courvalin. 1993. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 175, 117-127 https://doi.org/10.1128/jb.175.1.117-127.1993
  2. Arthur, M., F. Depardieu, C. Molinas, P. Reynolds, and P. Courvalin. 1995. The vanZ gene of Tn1546 from Enterococcus faecium BM4147 confers resistance to teicoplanin. Gene. 154, 87-92 https://doi.org/10.1016/0378-1119(94)00851-I
  3. Bager, F., M. Madsen, J. Christensen, and F.M. Aarestrup. 1997. Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Prev. Vet. Med. 31, 95-112 https://doi.org/10.1016/S0167-5877(96)01119-1
  4. Clinical and Laboratory Standards Institute. 2006. Performance standards for antimicrobial susceptibility testing, 16th informational supplement, M100-S16. Clinical and Laboratory Standards Institute, Wayne, Pa, USA
  5. Del Campo, R., C. Tenorio, C. Rubio, J. Castillo, C. Torres, and R. Gomez-Lus. 2000. Aminoglycoside-modifying enzymes in highlevel streptomycin and gentamicin resistant Enterococcus spp. in Spain. Int. J. Antimicrob. Agents 15, 221-226 https://doi.org/10.1016/S0924-8579(00)00169-2
  6. Eom, J.S., I.S. Hwang, B.Y. Hwang, J.G. Lee, Y.J. Lee, H.J. Cheong, Y.H. Park, S.C. Park, and W.J. Kim. 2004. Emergence of vanA genotype vancomycin-resistant enterococci with low or moderate levels of teicoplanin resistance in Korea. J. Clin. Microbiol. 42, 1785-1786 https://doi.org/10.1128/JCM.42.4.1785-1786.2004
  7. Hashimoto, Y., K. Tanimoto, Y. Ozawa, T. Murata, and Y. Ike. 2000. Amino acid substitutions in the VanS sensor of the VanAtype vancomycin-resistant Enterococcus strains result in highlevel vancomycin resistance and low-level teicoplanin resistance. FEMS Microbiol. Lett. 185, 247-254 https://doi.org/10.1111/j.1574-6968.2000.tb09070.x
  8. Hayes, J.R., D.D. Wagner, L.L. English, L.E. Carr, and S.W. Joseph. 2005. Distribution of streptogramin resistance determinants among Enterococcus faecium from a poultry production environment of the USA. J. Antimicrob. Chemother. 55, 123-126 https://doi.org/10.1093/jac/dkh491
  9. Jung, W.K., S.K. Hong, J.Y. Lim, S.K. Lim, N.H. Kwon, J.M. Kim, H.C. Koo, S.H. Kim, K.S. Seo, Y. Ike, K. Tanimoto, and Y.H. Park. 2006. Phenotypic and genetic characterization of vancomycin- resistant enterococci from hospitalized humans and from poultry in Korea. FEMS Microbiol. Lett. 260, 193-200 https://doi.org/10.1111/j.1574-6968.2006.00311.x
  10. Ko, K.S., J.Y. Baek, J.Y. Lee, W.S. Oh, K.R. Peck, N. Lee, W.G. Lee, K. Lee, and J.H. Song. 2005. Molecular characterization of vancomycin-resistant Enterococcus faecium isolates from Korea. J. Clin. Microbiol. 43, 2303-2306 https://doi.org/10.1128/JCM.43.5.2303-2306.2005
  11. Kolar, M., R. Pantucek, I. Vagnerova, P. Sauer, M. Kesselova, L. Cekanova, D. Koukalova, J. Doskar, and V. Ruzickova. 2006. Prevalence of vancomycin-resistant enterococci in hospitalized patients and those living in the community in the Czech Republic. New Microbiol. 29, 121-125
  12. Kuhn, I., A. Iversen, M. Finn, C. Greko, L.G. Burman, A.R. Blanch, X. Vilanova, A. Manero, H. Taylor, J. Caplin, L. Domínguez, I.A. Herrero, M.A. Moreno, and R. Möllby. 2005. Occurrence and relatedness of vancomycin-resistant enterococci in animals, humans, and the environment in different European regions. Appl. Environ. Microbiol. 71, 5383-5390 https://doi.org/10.1128/AEM.71.9.5383-5390.2005
  13. Lauderdale, T.L., L.C. McDonald, Y.R. Shiau, P.C. Chen, H.Y. Wang, J.F. Lai, and M. Ho. 2002. Vancomycin-resistant enterococci from humans and retail chickens in Taiwan with unique VanB phenotype-vanA genotype incongruence. Antimicrob. Agents Chemother. 46, 525-527 https://doi.org/10.1128/AAC.46.2.525-527.2002
  14. Lee, W.G., J.Y. Huh, S.R. Cho, and Y.A. Lim. 2004. Reduction in glycopeptide resistance in vancomycin-resistant enterococci as a result of vanA cluster rearrangements. Antimicrob. Agents Chemother. 48, 1379-1381 https://doi.org/10.1128/AAC.48.4.1379-1381.2004
  15. Mac, K., H. Wichmann-Schauer, J. Peters, and L. Ellerbroek. 2003. Species identification and detection of vancomycin resistance genes in enterococci of animal origin by multiplex PCR. Int. J. Food Microbiol. 88, 305-309 https://doi.org/10.1016/S0168-1605(03)00192-2
  16. Miele, A., M. Bandera, and B.P. Goldstein. 1995. Use of primers selective for vancomycin resistance genes to determine van genotype in enterococci and to study gene organization in VanA isolates. Antimicrob. Agents Chemother. 39, 1772-1778 https://doi.org/10.1128/AAC.39.8.1772
  17. Murrary, B.E. 1998. Diversity among multidrug-resistant enterococci. Emerg. Infect. Dis. 4, 37-47 https://doi.org/10.3201/eid0401.980106
  18. Park, I.J., W.G. Lee, H. Lee, D. Yong, K. Lee, E-C, Lim, S. H. Jeong, Y.J. Park, T.Y. Choi, Y. Uh, J.H. Shin, J. Lee, J.Y. Ahn, S-H. Lee, and G-J. Woo. 2006. Mechanism of VanB phenotype in vancomycin-resistant enterococci carrying vanA gene. Korean J. Lab. Med. 26, 412-417 https://doi.org/10.3343/kjlm.2006.26.6.412
  19. Simjee, S., A.P. Fraise, and M.J. Gill. 1999. Plasmid heterogeneity and identification of a Tn5281-like element in clinical isolates of high-level gentamicin-resistant Enterococcus faecium isolated in the UK. J. Antimicrob. Chemother. 43, 625-635 https://doi.org/10.1093/jac/43.5.625
  20. Simonsen, G.S., M.R. Myhre, K.H. Dahl, O. Olsvik, and A. Sundsfjord. 2000. Typeability of Tn1546-like elements in vancomycin-resistant enterococci using long-range PCRs and specific analysis of polymorphic regions. Microb. Drug Resist. 6, 49-57 https://doi.org/10.1089/mdr.2000.6.49
  21. Uttley, A.H., C.H. Collins, J. Naidoo, and R.C. George. 1998. Vancomycin-resistant enterococci. Lancet 1, 57-58
  22. Van Den Braak, N., E. Power, R. Anthony, H.P. Endtz, H.A. Verbrugh, and A. van Belkum. 2000. Random amplification of polymorphic DNA versus pulsed field gel electrophoresis of SmaI DNA macrorestriction fragments for typing strains of vancomycin-resistant enterococci. FEMS Microbiol. Lett. 192, 45-52 https://doi.org/10.1111/j.1574-6968.2000.tb09357.x
  23. Willems, R.J., J. Top, N. van den Braak, A. van Belkum, D.J. Mevius, G. Hendriks, M. van Santen-Verheuvel, J.D. van Embden. 1999. Molecular diversity and evolutionary relationships of Tn1546-like elements in enterococci from humans and animals. Antimicrob. Agents Chemother. 43, 483-491 https://doi.org/10.1093/jac/43.4.483
  24. Yu, H.S., S.Y. Seol, and D.T. Cho. 2003. Diversity of Tn1546-like elements in vancomycin-resistant enterococci isolated from humans and poultry in Korea. J. Clin. Microbiol. 41, 2641-2643 https://doi.org/10.1128/JCM.41.6.2641-2643.2003
  25. Zhanel, G.G., D.J. Hoban, and J.A. Karlowsky. 2001. Nitrofurantoin is active against vancomycin-resistant enterococci. Antimicrob. Agents Chemother. 45, 324-326 https://doi.org/10.1128/AAC.45.1.324-326.2001