• 제목/요약/키워드: Antimicrobial insect peptide

검색결과 17건 처리시간 0.03초

The Antimicrobial Insect Peptide CopA3 Blocks Ethanol-Induced Liver Inflammation and Liver Cell Injury in Mice

  • Kim, Ho
    • 한국미생물·생명공학회지
    • /
    • 제50권1호
    • /
    • pp.157-163
    • /
    • 2022
  • Alcoholic liver disease (ALD), which encompasses alcoholic steatosis, alcoholic hepatitis, and alcoholic cirrhosis, is a major cause of morbidity and mortality worldwide. Although the economic and health impacts of ALD are clear, few advances have been made in its prevention or treatment. We recently demonstrated that the insect-derived antimicrobial peptide CopA3 exerts anti-apoptotic and anti-inflammatory activities in various cell systems, including neuronal cells and colonic epithelial cells. Here, we tested whether CopA3 inhibits ethanol-induced liver injury in mice. Mice were intraperitoneally injected with ethanol only or ethanol plus CopA3 for 24 h and then liver injury and inflammatory responses were measured. Ethanol enhanced the production of proinflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, interferon (IFN)-γ, and IL-10. It also induced hepatocyte apoptosis and ballooning degeneration in hepatocytes. Notably, all these effects were eliminated or significantly reduced by CopA3 treatment. Collectively, our findings demonstrate that CopA3 ameliorates ethanol-induced liver cell damage and inflammation, suggesting the therapeutic potential of CopA3 for treating ethanol-induced liver injury.

곤충 유래 항균 펩타이드의 작용 기작 (Mode of Action of Antimicrobial Peptides Identified from Insects)

  • 이희정;이동건
    • 생명과학회지
    • /
    • 제25권6호
    • /
    • pp.715-723
    • /
    • 2015
  • 지구상에 존재하는 전체 동물 중 가장 큰 부분을 차지 하고 있는 곤충은 예로부터 인간의 식품, 농업, 산업, 의약 등의 일상 생활에 이용되어 왔다. 많은 수와 높은 영양학적 가치로 곤충의 생리활성물질이 미개발 생물자원으로 재평가 되고 있다. 곤충은 면역세포, 곤충 혈구세포, 효소들의 연쇄반응 혹은 항균 단백질/펩타이드 같은 방법으로 외부의 감염에 저항성을 가지게 된다. 항균 펩타이드는 곤충의 혈림프의 선천성 면역 시스템 중 주요한 성분중의 하나로 항생제 내성 균주의 출몰이 빈번하게 일어나 해결책으로 새로운 항생제 개발이 시급한 시점에서 유력한 후보물질로 주목 받고 있다. 곤충 유래 항균 펩타이드는 150개가 넘게 분리되었으며 크게 세크로핀, 디펜신, 글라이신/프롤린이 풍부한 펩타이드로 이루어진다. 이 논문에서, 향균 펩타이드를 생산하는 여러 곤충 중에서 벌, 소똥구리, 울도하늘소, 나비 그리고 울도하늘소에서 얻을 수 있는 펩타이드의 종류 그리고 작용 기작에 대해 알아보았다. 이 펩타이드들은 항균효과를 가지고 있으며 멜리틴을 제외하고 적혈구의 용혈 현상이 나타나지 않고 주로 세포막을 붕괴시키거나 세포자살기작을 유도하여 병원성 미생물의 성장을 억제한다. 곤충 유래 펩타이드와 같은 생리활성물질이 그 활용 가능성의 면에서 엄청난 가능성을 가지고 있어 이에 대한 연구는 앞으로 더 주목을 받을 것이다.

천잠 세크로핀 항균펩타이드 분리 및 정제 (Isolation and purification of a cecropin-like antimicrobial peptide from the japanese oak silkworm, Antheraea yamamai)

  • 김성렬;구태원;최광호;박승원;김성완;황재삼;강석우
    • 한국잠사곤충학회지
    • /
    • 제50권2호
    • /
    • pp.145-149
    • /
    • 2012
  • 세크로핀(cecropin)은 곤충의 체액성 면역에 있어서 효과적인 방어인자로 작용하는 항균 펩타이드로 잘 알려져 있다. 본 연구에서는 면역 유도된 천잠, Antheraea yamamai 유충 혈림프로부터 세크로핀 항균 펩타이드 분리 및 정제를 실시하였다. 먼저 항균 펩타이드를 분리하기 위해서, 면역 유도된 유충 및 정상 유충으로부터 추출된 혈림프 단백질 시료에 대한 단백질 전기영동(SDS-PAGE)를 통하여 비교분석하였다. 정상누에 혈림프 시료에 비해 면역 유도된 혈림프 추출물에서만 특이적으로 발현되는 분자량 4,223.01 Da의 펩타이드 밴드를 검출하였다. 선발된 면역유도 특이적 발현 펩타이드의 특성 분석을 위해서 이온교환 크로마토그래피 및 gel permeation 크래마토그래피을 수행하여 특이적으로 발현되는 펩타이드를 성공적으로 순수 정제하였다. 정제된 펩타이드는 Edman degradation법으로 N말단 아미노산 서열을 결정하였고 다른 나비목곤충의 세크로핀과 매우 높은 상동성을 나타내어 세크로핀으로 동정하였다. 또한 정제된 천잠 세크로핀 항균 펩타이드는 그람음성세균, 그람양성세균 및 곰팡이에 대해 폭 넓은 항균 스펙트럼을 나타냈었다.

The Antimicrobial Peptide CopA3 Inhibits Clostridium difficile Toxin A-Induced Viability Loss and Apoptosis in Neural Cells

  • Yoon, I Na;Hwang, Jae Sam;Lee, Joon Ha;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권1호
    • /
    • pp.30-36
    • /
    • 2019
  • Numerous studies have reported that enteric neurons involved in controlling neurotransmitter secretion and motility in the gut critically contribute to the progression of gut inflammation. Clostridium difficile toxins, which cause severe colonic inflammation, are also known to affect enteric neurons. Our previous study showed that C. difficile toxin A directly induces neural cell toxicities, such as viability loss and apoptosis. In the current study, we attempted to identify a potent inhibitor of toxin A-induced neural cell toxicity that may aid in managing toxin A-induced gut inflammation. In our recent study, we found that the Korea dung beetle-derived antimicrobial peptide CopA3 completely blocked neural cell apoptosis caused by okadaic acid or 6-OHDA. Here, we examined whether the antimicrobial peptide CopA3 inhibited toxin A-induced neural cell damage. In neuroblastoma SH-SY5Y cells, CopA3 treatment protected against both apoptosis and viability loss caused by toxin A. CopA3 also completely inhibited activation of the pro-apoptotic factor, caspase-3. Additionally, CopA3 rescued toxin A-induced downregulation of neural cell proliferation. However, CopA3 had no effect on signaling through ROS/p38 $MAPK/p27^{kip1}$, suggesting that CopA3 inhibits toxin A-induced neural cell toxicity independent of this well-characterized toxin A pathway. Our data further suggest that ability of CopA3 to rescue toxin A-induced neural cell damage may also ameliorate the gut inflammation caused by toxin A.

Antimicrobial Active Substances from Entomopathogenic Fungi (Various Applications of Entomopathogenic Fungi)

  • Shin, Tae Young;Woo, Soo Dong;Kim, Jeong Jun
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2016년도 춘계학술대회 및 임시총회
    • /
    • pp.13-13
    • /
    • 2016
  • Insects constitute the largest and most diverse group of animals in the world. They also serve as the hosts or nutrient sources for an immense assemblage of pathogens, parasites, and predators. More than 700 fungal species from 100 genera have adopted an entomopathogenic lifestyle. Although entomopathogenic fungi were studied as only biocontrol agents against a variety of pests in various countries, it has been recently focused their additional roles in nature. They are antagonists to/against plant pathogens, endophytes, and possibly even plant growth promoting agents. The potential antimicrobial effect against fungal plant pathogens by an isolate of entomopathogenic fungi including Beauveria bassiana, Lecanicillium spp., and Isaria fumosorosea have been reported since late 1990s, but wasn't reported pathogenicity of the isolate against pests. Later, a Canadian Lecanicillium sp. isolate and L. longisporium isolated from Vertalec$^{(R)}$ showed simultaneous control effect against both aphid and cucumber powder mildew. Therefore, the antimicrobial activities of 342 fungi isolates collected from various regions and conditions in Korea were evaluated against plant pathogenic fungus Botrytis cinerea using dual culture technique on agar plate. As a result, 186 isolates (54.4%) shown the antifungal activity against B. cinerea. The culture filtrates of selected fungi completely suppressed the growth of the microorganisms, indicating that suppression was due to the presence of antimicrobial substances in the culture filtrate. Mode of action of these fungi against insect involves the attachment of conidia to the insect cuticle, followed by germination, cuticle penetration, and internal dissemination throughout the insect. During infection process, secreted enzymes, proteinous toxins, and/or secondary metabolites secreted by entomopathogenic fungi can be used to overcome the host immune system, modify host behavior, and defend host resources. Recently, secondary metabolites isolated from entomopathogenic fungi have been reported as potential bioactive substances. Generally, most of bioactive substances produced by entomopathogenic fungi have reported low molecular weight (lower than 1,000 g/mol) as peptide and, in contrast the high molecular weight fungal bioactive substances are rare. Most substances based on entomopathogenic fungi were shown antimicrobial activity with narrow control ranges. In our study we analyzed the antimicrobial substances having antagonistic effects to B. cinerea. Antimicrobial substances in our fungal culture filtrates showed high thermostability, high stability to proteolytic enzymes, and hydrophilicity and their molecular weights were differed from substance. In conclusion, entomopathogenic fungi showed pathogenicity against insect pests and culture filtrate of the fungi also shown to antimicrobial activity. In the future, we can use the entomopathogenic fungi and its secondary metabolites to control both insect pest control and plant pathogenic fungi simultaneously.

  • PDF

Role of Amino Acid Residues within the Disulfide Loop of Thanatin, a Potent Antibiotic Peptide

  • Lee, Myung-Kyu;Cha, Li-Na;Lee, Si-Hyung;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • 제35권3호
    • /
    • pp.291-296
    • /
    • 2002
  • Thanatin, a 21-residue peptide, is an inducible insect peptide with a broad range of activity against bacteria and fungi. It has a C-terminal disulfide loop, like the frog skin secretion antimicrobial peptides of the brevinin family. In this study, we tried to find the effect of a number of amino acids between the disulfide bond. Thanatin showed stronger antibacterial activity to Gram negative bacteria than other mutants, except Th1; whereas, the mutant peptides with deletion had higher activity to Gram positive bacteria than thanatin. An increase in the number of amino acid(s) using the alanine residue decreased the antibacterial activity in all of the bacteria. Th1 with deletion of threonine at position 15 ($Thr^{15}$) showed similar antibacterial activity against Gram-negative bacteria, but had higher activity against the Gram positive bacteria. In order to study the structure-function relationship, we measured liposome disruption by the peptides and CD spectra of the peptides. Th1 also showed the highest liposome leaking activity and α-helical propensity in the sodium dodecyl sulfate solution, compared with other peptides. Liposome disruption activity was closely correlated with the anti-Gram positive bacterial activity. All of the peptides showed no hemolytic activity. Th1 was considered to be useful as an antimicrobial peptide with broad spectrum without toxicity.

Degradation of Insect Humoral Immune Proteins by the Proteases Secreted from Enterococcus faecalis

  • Park, Shin-Yong;Kim, Koung-Mi;Kim, Ik-Soo;Lee, Sang-Dae;Lee, In-Hee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제13권1호
    • /
    • pp.37-43
    • /
    • 2006
  • Enterococcus faecalis was isolated from the body fluid of dead Galleria mellonella larvae. Upon injection of E. faecalis into the hemocoel of G. mellonella, the bacteria destroyed parts of humoral defense systems in the hemolymph. In a test for the proteolytic activity of E. faecalis CS, it was confirmed that the enzyme degraded three well-known a-helical antimicrobial peptides, cecropin A, melittin and halocidin, and abolished their activities. We also determined putative cleavage sites on the primary sequences of three peptides through purification and mass analysis of peptide fragments digested by E. faecalis CS. Furthermore it was found that apolipophorin-III, recently known as a critical recognition protein for invading microbes in the hemolymph of G. mellonella, was also degraded by E. faecalis CS. Taken together, the present work shows that the protease in secretions from E. faecalis destroyed two critical humoral immune factors in the hemolymph of G. mellonella larvae. In addition, this paper demonstrates that the relationship between the host insect and the pathogenic bacteria might provide a valuable model system to study the enterococcal virulence mechanism, which may be relevant to mammalian pathogenesis.

Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle

  • Lee, Jaeho;Lee, Daeun;Choi, Hyemin;Kim, Ha Hyung;Kim, Ho;Hwang, Jae Sam;Lee, Dong Gun;Kim, Jae Il
    • BMB Reports
    • /
    • 제47권11호
    • /
    • pp.625-630
    • /
    • 2014
  • Defensins, which are small cationic molecules produced by organisms as part of their innate immune response, share a common structural scaffold that is stabilized by three disulfide bridges. Coprisin is a 43-amino acid defensin-like peptide from Copris tripartitus. Here, we report the intramolecular disulfide connectivity of cysteine-rich coprisin, and show that it is the same as in other insect defensins. The disulfide bond pairings of coprisin were determined by combining the enzymatic cleavage and mass analysis. We found that the loss of any single disulfide bond in coprisin eliminated all antibacterial, but not antifungal, activity. Circular dichroism (CD) analysis showed that two disulfide bonds, Cys20-Cys39 and Cys24-Cys41, stabilize coprisin's ${\alpha}$-helical region. Moreover, a BLAST search against UniProtKB database revealed that coprisin's ${\alpha}$-helical region is highly homologous to those of other insect defensins.

Insect peptide CopA3 promotes proliferation and PAX7 and MYOD expression in porcine muscle satellite cells

  • Jeongeun, Lee;Jinryoung, Park;Hosung, Choe;Kwanseob, Shim
    • Journal of Animal Science and Technology
    • /
    • 제64권6호
    • /
    • pp.1132-1143
    • /
    • 2022
  • Insects are a valuable natural source that can produce a variety of bioactive compounds due to their increasing species diversity. CopA3 is an antimicrobial peptide derived from Copris tripartitus (i.e., the dung beetle). It is known to increase the proliferation of colonic epithelial and neuronal stem cells by regulating cell cycle. This research hypothesized that CopA3 can promote the proliferation of porcine muscle satellite cells (MSCs). The effects of CopA3 on porcine MSCs, which are important for muscle growth and regeneration, remain unclear. Here, we investigated the effects of CopA3 on porcine MSCs. According to viability results, we designed four groups: control (without CopA3) and three treatment groups (treated with 5,10, and 25 ㎍/mL of CopA3). At a CopA3 concentration of 5 ㎍/mL and 10 ㎍/mL, the proliferation of MSCs increased more than that observed in the control group. Furthermore, compared to that in the control, CopA3 treatment increased the S phase but decreased the G0/G1 phase ratio. Additionally, early and late apoptotic cells were found to be decreased in the 5 ㎍/mL group. The expressions of the myogenesis-related transcription factor PAX7 and MYOD proteins were significantly upregulated in the 5 ㎍/mL and 10 ㎍/mL groups, whereas the MYOG protein remained undetected in all group. This study suggested that CopA3 promotes muscle cell proliferation by regulating the cell cycle of MSCs and can regulate the activity of MSCs by increasing the expressions of PAX7 and MYOD.

Antibacterial effects of two cecropin type peptides isolated from the silkworm against Salmonella species

  • Kim, Seong Ryul;Park, Jong Woo;Kim, Seong-Wan;Kim, Su Bae;Jo, You-Young;Kim, Kee Young;Choi, Kwang-Ho;Ji, Sang Deok;Kim, Jong gil;Kweon, HaeYong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제37권2호
    • /
    • pp.95-99
    • /
    • 2018
  • In insect defense system, antimicrobial peptides (AMPs) are one of important biological molecules to survive in a variety of environments. Insect can synthesize AMPs to protect against invading pathogens in humoral immune response. Taking more advantage of biological antimicrobial molecules, we report antibacterial activity of two cecropin type peptides, cecropin and moricin, isolated from the silkworm against four salmonella species. In this work, we purified antimicrobial candidate peptides (AMCP) from the extracts of immune challenged silkworm larval hemolymph by two-step chromatographic purification procedure, cation exchange and gel permeation chromatography. The molecular weights of purified peptides were estimated to be about 4 ~ 5 kDa by Tricin SDS-PAGE analysis, and identified as silkworm cecropin and moricin by NCBI BLAST homology search with their N-terminal amino acid sequences. As antibacterial activity assay, the purified peptides showed stronger antibacterial activity against Salmonella pathogens with an MIC value of $1{\sim}4{\mu}g/mL$. Therefore two cecropin type peptides purified from the silkworm will be valuable potential materials for development of new natural antibiotics.