Browse > Article
http://dx.doi.org/10.5187/jast.2022.e81

Insect peptide CopA3 promotes proliferation and PAX7 and MYOD expression in porcine muscle satellite cells  

Jeongeun, Lee (Department of Agricultural Convergence Technology, Jeonbuk National University)
Jinryoung, Park (Department of Stem Cell and Regenerative Biotechnology, Konkuk University)
Hosung, Choe (Department of Animal Biotechnology, Jeonbuk National University)
Kwanseob, Shim (Department of Agricultural Convergence Technology, Jeonbuk National University)
Publication Information
Journal of Animal Science and Technology / v.64, no.6, 2022 , pp. 1132-1143 More about this Journal
Abstract
Insects are a valuable natural source that can produce a variety of bioactive compounds due to their increasing species diversity. CopA3 is an antimicrobial peptide derived from Copris tripartitus (i.e., the dung beetle). It is known to increase the proliferation of colonic epithelial and neuronal stem cells by regulating cell cycle. This research hypothesized that CopA3 can promote the proliferation of porcine muscle satellite cells (MSCs). The effects of CopA3 on porcine MSCs, which are important for muscle growth and regeneration, remain unclear. Here, we investigated the effects of CopA3 on porcine MSCs. According to viability results, we designed four groups: control (without CopA3) and three treatment groups (treated with 5,10, and 25 ㎍/mL of CopA3). At a CopA3 concentration of 5 ㎍/mL and 10 ㎍/mL, the proliferation of MSCs increased more than that observed in the control group. Furthermore, compared to that in the control, CopA3 treatment increased the S phase but decreased the G0/G1 phase ratio. Additionally, early and late apoptotic cells were found to be decreased in the 5 ㎍/mL group. The expressions of the myogenesis-related transcription factor PAX7 and MYOD proteins were significantly upregulated in the 5 ㎍/mL and 10 ㎍/mL groups, whereas the MYOG protein remained undetected in all group. This study suggested that CopA3 promotes muscle cell proliferation by regulating the cell cycle of MSCs and can regulate the activity of MSCs by increasing the expressions of PAX7 and MYOD.
Keywords
Antimicrobial peptide; CopA3; Satellite cell; Proliferation; Pig;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Belal SA, Sivakumar AS, Kang DR, Cho S, Choe HS, Shim KS. Modulatory effect of linoleic and oleic acid on cell proliferation and lipid metabolism gene expressions in primary bovine satellite cells. Anim Cells Syst. 2018;22:324-33. https://doi.org/10.1080/19768354.2018.1517824   DOI
2 Gabrielli B, Brooks K, Pavey S. Defective cell cycle checkpoints as targets for anti-cancer therapies. Front Pharmacol. 2012;3:9. https://doi.org/10.3389/fphar.2012.00009   DOI
3 Schmidt M, Schuler SC, Huttner SS, von Eyss B, von Maltzahn J. Adult stem cells at work: regenerating skeletal muscle. Cell Mol Life Sci. 2019;76:2559-70. https://doi.org/10.1007/s00018-019-03093-6   DOI
4 Olguin HC, Olwin BB. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol. 2004;275:375-88. https://doi.org/10.1016/j.ydbio.2004.08.015   DOI
5 Wen Y, Bi P, Liu W, Asakura A, Keller C, Kuang S. Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol Cell Biol. 2012;32:2300-11. https://doi.org/10.1128/MCB.06753-11   DOI
6 Dumont NA, Wang YX, Rudnicki MA. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development. 2015;142:1572-81. https://doi.org/10.1242/dev.114223   DOI
7 Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, et al. Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci. 2006;119:1824-32. https://doi.org/10.1242/jcs.02908   DOI
8 Day K, Paterson B, Yablonka-Reuveni Z. A distinct profile of myogenic regulatory factor detection within Pax7+ cells at S phase supports a unique role of Myf5 during posthatch chicken myogenesis. Dev Dyn. 2009;238:1001-9. https://doi.org/10.1002/dvdy.21903   DOI
9 Casciaro B, Cappiello F, Loffredo MR, Mangoni ML. Methods for the in vitro examination of the antibacterial and cytotoxic activities of antimicrobial peptides. In: Sandrelli F, Tettamanti G, editors. Immunity in insects. New York, NY: Humana; 2020. p. 147-62.
10 Stork NE. How many species of insects and other terrestrial arthropods are there on Earth. Annu Rev Entomol. 2018;63:31-45. https://doi.org/10.1146/annurev-ento-020117-043348   DOI
11 Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides. 2012;37:207-15. https://doi.org/10.1016/j.peptides.2012.07.001   DOI
12 Wu Q, Patocka J, Kuca K. Insect antimicrobial peptides, a mini review. Toxins. 2018;10:461. https://doi.org/10.3390/toxins10110461   DOI
13 Xiao H, Shao F, Wu M, Ren W, Xiong X, Tan B, et al. The application of antimicrobial peptides as growth and health promoters for swine. J Anim Sci Biotechnol. 2015;6:19. https://doi.org/10.1186/s40104-015-0018-z   DOI
14 Kim HJ, Kim DH, Lee JY, Hwang JS, Lee JH, Lee SG, et al. Study of anti-inflammatory effect of CopA3 peptide derived from Copris tripartitus. J Life Sci. 2013;23:38-43. https://doi.org/10.5352/JLS.2013.23.1.38   DOI
15 Lee J, Kim I, Shin Y, Park H, Lee Y, Lee I, et al. Enantiomeric CopA3 dimer peptide suppresses cell viability and tumor xenograft growth of human gastric cancer cells. Tumor Biol. 2016;37:3237-45. https://doi.org/10.1007/s13277-015-4162-z   DOI
16 Kim IW, Kim S, Kwon YN, Yun EY, Ahn MY, Kang DC, et al. Effects of the synthetic coprisin analog peptide, CopA3 in pathogenic microorganisms and mammalian cancer cells. J Microbiol Biotechnol. 2012;22:156-8. https://doi.org/10.4014/jmb.1109.09014   DOI
17 Zammit PS, Beauchamp JR. The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation. 2001;68:193-204. https://doi.org/10.1046/j.1432-0436.2001.680407.x   DOI
18 Kim S, Kim IW, Kwon YN, Yun EY, Hwang JS. Synthetic Coprisin analog peptide, D-CopA3 has antimicrobial activity and pro-apoptotic effects in human leukemia cells. J Microbiol Biotechnol. 2012;22:264-9. https://doi.org/10.4014/jmb.1110.10071   DOI
19 Lee JH, Kim IW, Kim SH, Yun EY, Nam SH, Ahn MY, et al. Anticancer activity of CopA3 dimer peptide in human gastric cancer cells. BMB Rep. 2015;48:324-9. https://doi.org/10.5483/BMBRep.2015.48.6.073   DOI
20 Dayton WR, White ME. Cellular and molecular regulation of muscle growth and development in meat animals. J Anim Sci. 2008;86:E217-25. https://doi.org/10.2527/jas.2007-0456   DOI
21 Dhawan J, Rando TA. Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol. 2005;15:666-73. https://doi.org/10.1016/j.tcb.2005.10.007   DOI
22 Marroncelli N, Bianchi M, Bertin M, Consalvi S, Saccone V, De Bardi M, et al. HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Sci Rep. 2018;8:3448. https://doi.org/10.1038/s41598-018-21835-7   DOI
23 Pavlath GK, Horsley V. Cell fusion in skeletal muscle: central role of NFATC2 in regulating muscle cell size. Cell Cycle. 2003;2:420-3. https://doi.org/10.4161/cc.2.5.497   DOI
24 Mesires NT, Doumit ME. Satellite cell proliferation and differentiation during postnatal growth of porcine skeletal muscle. Am J Physiol Cell Physiol. 2002;282:C899-906. https://doi.org/10.1152/ajpcell.00341.2001   DOI
25 Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93:23-67. https://doi.org/10.1152/physrev.00043.2011   DOI
26 Pallafacchina G, Blaauw B, Schiaffino S. Role of satellite cells in muscle growth and maintenance of muscle mass. Nutr Metab Cardiovasc Dis. 2013;23:S12-8. https://doi.org/10.1016/j.numecd.2012.02.002   DOI
27 Bentzinger CF, Wang YX, Rudnicki MA. Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol. 2012;4:a008342. https://doi.org/10.1101/cshperspect.a008342   DOI
28 Moresi V, Marroncelli N, Adamo S. New insights into the epigenetic control of satellite cells. World J Stem Cells. 2015;7:945-55. https://doi.org/10.4252/wjsc.v7.i6.945   DOI
29 Le Grand F, Rudnicki MA. Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol. 2007;19:628-33. https://doi.org/10.1016/j.ceb.2007.09.012   DOI
30 Oishi Y, Hayashida M, Tsukiashi S, Taniguchi K, Kami K, Roy RR, et al. Heat stress increases myonuclear number and fiber size via satellite cell activation in rat regenerating soleus fibers. J Appl Physiol. 2009;107:1612-21. https://doi.org/10.1152/japplphysiol.91651.2008   DOI
31 Kamanga-Sollo E, Pampusch MS, White ME, Hathaway MR, Dayton WR. Effects of heat stress on proliferation, protein turnover, and abundance of heat shock protein messenger ribonucleic acid in cultured porcine muscle satellite cells. J Anim Sci. 2011;89:3473-80. https://doi.org/10.2527/jas.2011-4123   DOI
32 Xiong X, Yang HS, Li L, Wang YF, Huang RL, Li FN, et al. Effects of antimicrobial peptides in nursery diets on growth performance of pigs reared on five different farms. Livest Sci. 2014;167:206-10. https://doi.org/10.1016/j.livsci.2014.04.024   DOI
33 Park J, Lee J, Song KD, Kim SJ, Kim DC, Lee SC, et al. Growth factors improve the proliferation of Jeju black pig muscle cells by regulating myogenic differentiation 1 and growthrelated genes. Anim Biosci. 2021;34:1392-402. https://doi.org/10.5713/ab.20.0585   DOI
34 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262   DOI
35 Kang BR, Kim H, Nam SH, Yun EY, Kim SR, Ahn MY, et al. CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway. BMB Rep. 2012;45:85-90. https://doi.org/10.5483/BMBRep.2012.45.2.85   DOI
36 Nigg EA. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. BioEssays. 1995;17:471-80. https://doi.org/10.1002/bies.950170603   DOI
37 Nam ST, Kim DH, Lee MB, Nam HJ, Kang JK, Park MJ, et al. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis. Biochem Biophys Res Commun. 2013;437:35-40. https://doi.org/10.1016/j.bbrc.2013.06.031   DOI
38 Kim DH, Hwang JS, Lee IH, Nam ST, Hong J, Zhang P, et al. The insect peptide CopA3 increases colonic epithelial cell proliferation and mucosal barrier function to prevent inflammatory responses in the gut. J Biol Chem. 2016;291:3209-23. https://doi.org/10.1074/jbc.M115.682856   DOI
39 Grana X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene. 1995;11:211-9.
40 Starostina NG, Kipreos ET. Multiple degradation pathways regulate versatile CIP/KIP CDK inhibitors. Trends Cell Biol. 2012;22:33-41. https://doi.org/10.1016/j.tcb.2011.10.004   DOI
41 Qin LL, Li XK, Xu J, Mo DL, Tong X, Pan ZC, et al. Mechano growth factor (MGF) promotes proliferation and inhibits differentiation of porcine satellite cells (PSCs) by downregulation of key myogenic transcriptional factors. Mol Cell Biochem. 2012;370:221-30. https://doi.org/10.1007/s11010-012-1413-9   DOI
42 Sato J, Nair K, Hiddinga J, Eberhardt NL, Fitzpatrick LA, Katusic ZS, et al. eNOS gene transfer to vascular smooth muscle cells inhibits cell proliferation via upregulation of p27 and p21 and not apoptosis. Cardiovasc Res. 2000;47:697-706. https://doi.org/10.1016/S0008-6363(00)00137-1   DOI
43 Bond M, Sala-Newby GB, Wu YJ, Newby AC. Biphasic effect of p21Cip1 on smooth muscle cell proliferation: role of PI 3-kinase and Skp2-mediated degradation. Cardiovasc Res. 2006;69:198-206. https://doi.org/10.1016/j.cardiores.2005.08.020   DOI
44 Quasnichka H, Slater SC, Beeching CA, Boehm M, Sala-Newby GB, George SJ. Regulation of smooth muscle cell proliferation by β-catenin/T-cell factor signaling involves modulation of cyclin D1 and p21 expression. Circ Res. 2006;99:1329-37. https://doi.org/10.1161/01.RES.0000253533.65446.33   DOI
45 Li J, Han S, Cousin W, Conboy IM. Age-specific functional epigenetic changes in p21 and p16 in injury-activated satellite cells. Stem Cells. 2015;33:951-61. https://doi.org/10.1002/stem.1908   DOI
46 Golias CH, Charalabopoulos A, Charalabopoulos K. Cell proliferation and cell cycle control: a mini review. Int J Clin Pract. 2004;58:1134-41. https://doi.org/10.1111/j.1742-1241.2004.00284.x   DOI
47 Chakravarthy MV, Abraha TW, Schwartz RJ, Fiorotto ML, Booth FW. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/AKT signaling pathway. J Biol Chem. 2000;275:35942-52. https://doi.org/10.1074/jbc.M005832200   DOI