• Title/Summary/Keyword: Antimicrobial efficacy

Search Result 251, Processing Time 0.036 seconds

The anti-inflammation effects of A.C.C. extracts on the LPS-induced Raw 264.7 cell (LPS로 유도한 Raw 264.7 세포에서 A.C.C. 추출물의 항염증 효과)

  • Ryu, Jin-Hyeob;An, Ju-Hee;Woo, Yong-Kyu;Cho, Hyun-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.503-511
    • /
    • 2017
  • This study was conducted to evaluate the anti-inflammatory activity and clinical efficacy of a sample (A.C.C. extracts) obtained by distillation extraction of 14 herbal medicines including Phellodendron bark. To confirm this, the amount of nitric oxide (NO) produced by the cells in RAW 264.7 cells stimulated by lipopolysaccharide (LPS) and the changes in the production of inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$, interleukin(IL)-$1{\beta}$ and IL-6 were determined. The results showed that A.C.C. extracts strongly inhibited the production of NO and inflammatory cytokines increased by LPS without cytotoxicity. In addition, A.C.C. extracts showed strong bacterial reduction rates of 99.9% in Pseudomonas aeruginosa, Staphylococcus aureus, MRSA (Methicillin-resistant Staphylococcus aureus), Candida albicans and Streptococcus mutans. These findings indicate that A.C.C. extracts are effective ingredients with a strong antimicrobial effect together with an anti-inflammatory effect. In addition, when A.C.C. extracts were applied to infants and toddlers who were suffering from diaper rash, itching, and perspiration symptoms, symptoms of rash, atopy, rash, itching, and heat rash were improved. After the lapse of time, it was visually confirmed that it was considerably relaxed. These findings confirm that A.C.C. extracts comprise a clinically effective anti-inflammatory and anti-bacterial agent that alleviates symptoms such as diaper rash and fever and may therefore be an effective alternative to inflammatory diseases.

Whitening and anti-wrinkle effect of Spirodela polyrhiza extracts (부평초 추출물의 미백 및 항주름 효과)

  • Kim, Dong Hee;Park, Tae Soon;Kim, Se Gie
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.391-398
    • /
    • 2019
  • The antioxidant, whitening, and anti-wrinkle activity of Spirodela polyrhiza extracts and fractions were evaluated to determine its efficacy as a functional cosmetic material. 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging activities were 44.2 and 74.3%, respectively, at 100 ㎍/mL of SE-E (the ethyl acetate fraction of 70% ethanol extract). To measure anti-wrinkle effects, procollagen biosynthesis and matrix metalloproteinase-1 (MMP-1) inhibition activity were determined. At 25 ㎍/mL of SE (70% ethanol extract), the biosynthesis activity was 48.5%, and SE-E showed the best activity (57.8%) at the same concentration. MMP-1 inhibition activity of SE and SE-E was 13.4 and 28.5%, respectively, at 25 ig/mL. Finally, the inhibition of cellular melanin synthesis and cellular tyrosinase were measured to determine the whitening effect; at 25 ㎍/mL, the inhibition activities of SE were 9.6 and 13.8%, respectively, and those for SE-E were 15.4 and 22.0%, respectively. Our results confirmed the possibility of SE and SE-E as effective functional materials. Further research investigating the antimicrobial, anti-inflammatory, and anticancer activities of S. polyrhiza is necessary to confirm its potential use in the food, cosmetics, and drug industries.

Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens

  • Song, Hyun-Hwa;Lee, Jae-Kwan;Um, Heung-Sik;Chang, Beom-Seok;Lee, Si-Young;Lee, Min-Ku
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.2
    • /
    • pp.72-78
    • /
    • 2013
  • Purpose: The purpose of this study was to compare the phototoxic effects of blue light exposure on periodontal pathogens in both planktonic and biofilm cultures. Methods: Strains of Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis, in planktonic or biofilm states, were exposed to visible light at wavelengths of 400.520 nm. A quartz-tungsten-halogen lamp at a power density of $500mW/cm^2$ was used for the light source. Each sample was exposed to 15, 30, 60, 90, or 120 seconds of each bacterial strain in the planktonic or biofilm state. Confocal scanning laser microscopy (CSLM) was used to observe the distribution of live/dead bacterial cells in biofilms. After light exposure, the bacterial killing rates were calculated from colony forming unit (CFU) counts. Results: CLSM images that were obtained from biofilms showed a mixture of dead and live bacterial cells extending to a depth of $30-45{\mu}m$. Obvious differences in the live-to-dead bacterial cell ratio were found in P. gingivalis biofilm according to light exposure time. In the planktonic state, almost all bacteria were killed with 60 seconds of light exposure to F. nucleatum (99.1%) and with 15 seconds to P. gingivalis (100%). In the biofilm state, however, only the CFU of P. gingivalis demonstrated a decreasing tendency with increasing light exposure time, and there was a lower efficacy of phototoxicity to P. gingivalis as biofilm than in the planktonic state. Conclusions: Blue light exposure using a dental halogen curing unit is effective in reducing periodontal pathogens in the planktonic state. It is recommended that an adjunctive exogenous photosensitizer be used and that pathogens be exposed to visible light for clinical antimicrobial periodontal therapy.

Development of New Materials of Ginseng by Nanoparticles

  • Yang, Deok Chun;Mathiyalagan, Ramya;Yang, Dong Uk;Perez, Zuly Elizabeth Jimenez;Hurh, Joon;Ahn, Jong Chan
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.3-3
    • /
    • 2018
  • For centuries, Panax ginseng Meyer (Korean ginseng) has been widely used as a medicinal herb in Korea, China, and Japan. Ginsenosides are a class of triterpene saponins and recognized as the bioactive components in Korean ginseng. Ginsenosides, which can be classified broadly as protopanaxadiols (PPD), protopanaxatriols (PPT), and oleanolic acids, have been shown to flaunt a vast array of pharmacological activities such as immune-modulatory, anti-inflammatory, anti-tumor, anti-diabetic, and antioxidant effects. In recent years, a number of ginseng and ginsenoside researches have increasingly gained wide attention owing to its unique pharmacological properties. Although good efficacies of ginsenosides have been reported, lack of target specific delivery into tumor sites, low solubility, and low bioavailability due to modifications in gastro-intestinal environments limit their biomedical application in clinical trials. As a result to this major challenge, nanotechnology and drug delivery techniques play a significant role to solve this problematic issue. Thus, we reported the preparation of poly-ethylene glycol (PEG) and glycol chitosan (GC) functionalized to ginsenoside (Compound K and PPD) conjugates via hydrolysable ester bonds with improved aqueous solubility and pH-dependent drug release. In vitro cytotoxicity assays revealed that PEG-CK, and PPD-CK conjugates exhibited lower cytotoxicity compared to bare CK and PPD in HT29 cells. However, GC-CK conjugates exhibited higher and similar cytotoxicity in HT29 and HepG2 cells. Furthermore, GC-CK-treated RAW264.7 cells did not exhibit significant cell death at higher concentration of treatment which supports the biocompatibility of the polymer conjugates. They also inhibited nitric oxide production in lipopolysaccharide (LPS)-induced RAW64.7 cells. In addition to polymer-ginsenoside conjugates, silver (AgNps) and gold nanoparticles (AuNps) have been successfully synthesized by green chemistry using different m. The biosynthesized nanoparticles demonstrated antimicrobial efficacy, anticancer, anti-inflammatory, antioxidant activity, biofilm inhibition, and anticoagulant effect. Special interest on the effective delivery methods of ginsenoside to treatment sites is the focus of metal nanoparticle research.In short, nano-sizing of ginsenoside results in an increased water solubility and bioavailability. The use of nano-sized ginsenoside and P. ginseng mediated metallic nanoparticles is expected to be effective on medical platform against various diseases in the future.

  • PDF

Enhancement of the Cosmeceutical Activity by Nano-encapsulation of Thiamine Di-lauryl Sulfate (TDS) with antimicrobial efficacy (항균 효능이 있는 비타민 B1 유도체(Thiamine Dilauryl Sulfate:TDS)의 나노입자화를 통한 기능성 향장 활성 증진)

  • Seo, Yong Chang;No, Ra Hwan;Kwon, Hee-Seok;Lee, Hyeon Yong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.3
    • /
    • pp.205-213
    • /
    • 2013
  • This study was to improve cosmetical activity of thiamine di-lauryl sulfate (TDS) by encapsulation of nanoparticle with lecithin. Results showed that most of the nanoparticles containing the TDS were well formed in round shape with below 150 ~ 200 nm diameter as well as they were fairly stable in various pH ranges by measuring zeta potentials. The nanoparticles of TDS resulted in 85% cell viability of human normal fibroblast cells (CCD-986sk) when added at the highest concentration (1.0 mg/mL). The nanoparticles of Acer mono sap showed highest free radical scavengering effect as 88.1% in adding sample (1.0 mg/mL), compared to TDS solution of non-encapsulation (81.6%). The nanoparticles of TDS reduced the expression of MMP-1 on UV-irradiated CCD-986sk cells down to as 41.4%. The TDS solution and nanoparticles showed significant anti-microbial activities agaionst the salmonella typhimurium and listeria monocytogenes at 5 and 6 days as compared with control. Anti-microbial activities of TDS nanoparticles were similar to positive control. These results indicated that TDS nanoparticles may be a source for functional cosmetic agents capable of improving cosmetical activity such as antioxidant, whitening, and anti-wrinkling effects and can be further developed as natural preservative in cosmetics.

Sanguinarine Increases Sensitivity of Human Gastric Adenocarcinoma Cells to TRAIL-mediated Apoptosis by Inducing DR5 Expression and ROS Generation (AGS 인체 위암세포에서 DR5의 발현 및 ROS 생성의 증가를 통한 sanguinarine과 TRAIL 혼합처리의 apoptosis 유도 활성 촉진)

  • Lee, Taek Ju;Im, Yong Gyun;Choi, Woo Young;Choi, Sung Hyun;Hwang, Won Deok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.927-934
    • /
    • 2014
  • Sanguinarine, a benzophenanthridine alkaloid originally derived from the root of Sanguinaria canadensis, has been shown to possess antimicrobial, antioxidant, and anti-cancer properties. Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known to induce apoptosis in cancer cells, but not most normal cells and has shown efficacy in a phase 2 clinical trial, development of resistance to TRAIL by tumor cells is a major roadblock. Our previous study indicated that treatment with TRAIL in combination with subtoxic concentrations of sanguinarine sensitized TRAIL-mediated apoptosis in TRAIL-resistant human gastric carcinoma AGS cells; however, the detailed mechanisms are not fully understood. In this study, we show that sanguinarine sensitizes AGS cells to TRAIL-mediated apoptosis as detected by MTT assay, agarose gel electrophoresis, chromatin condensation and flow cytometry analysis. Combined treatment with sanguinarine and TRAIL effectively induced expression of death receptor (DR) 5 but did not affect expression of DR4 and mitogen activated protein kinases signaling molecules. Moreover, the combined treatment with sanguinarine and TRAIL increased the generation of reactive oxygen species (ROS); however, N-acetylcysteine, ROS scavenger, significantly recovered growth inhibition induced by the combined treatment. Taken together, our results indicate that sanguinarine can potentiate TRAIL-mediated apoptosis through upregulation of DR5 expression and ROS generation.

Evaluation of Antimicrobial Activity and Disease Control Efficacy of Sodium Dichloroisocyanurate (NaDCC) Against Major Strawberry Diseases (딸기 주요 병원균에 대한 친환경제제 NaDCC의 항균활성 및 병 방제효과 평가)

  • Kim, Da-Ran;Gang, Gun-Hye;Cho, Hyun-Ji;Yoon, Hae-Suk;Kwak, Youn-Sig
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Various diseases occur in fruits, leave and roots during strawberry cultivation and cause severe economical damage and huge amount of chemical fungicide use. Recently, as consumers' interest in safety of foods and organic agriculture produces have increased, control measures using alternatives for chemical fungicides have been newly developed in various ways. This study was conducted to test antifungal activity and control effect of sodium dichloroisocyanurate (NaDCC), using as disinfectants, against major disease pathogens of strawberry, Fusarium oxysporum (Fusarium wilt), Colletotrichum gloeosporioides (Anthracnose) and Phytophthora sp. (Phytophthora blight), and Xanthomonas fragariae (bacterial angular leaf spot) and evaluate availability as environment-friendly materials. When NaDCC was treated at the concentration range of 150 to 300 ppm, it suppressed significantly hyphal growth and reduced spore germination by more than 28%. In field condition, NaDCC showed excellent control effect (control value: 50%) against the bacterial angular leaf spot disease. Based on above-described results, we suggested that NaDCC can be used as alternative candidates to chemical pesticide alternatives of for controlling strawberry diseases.

An Experimental Study on the Anti-inflammatory, Anti-pruritic and Anti-microbial Effects of the Three Herbal Prescription: Eunhwasagan-tang (EST), Sobokchukeo-tang (SCT), Wandae-tang (WDT) (대하(帶下) 처방 3종의 항염, 항소양, 항균 효능에 관한 실험 연구 : 은화사간탕(銀花瀉肝湯), 소복축어탕(少腹逐瘀湯), 완대탕(完帶湯))

  • Lee, Eun-Kyu;Park, Chan-Wook;Kim, Soo-Hyeon;Choi, Yoo-Jin;Park, Kyung-Mi;Yang, Seung-Jeong;Cho, Seong-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.32 no.3
    • /
    • pp.32-56
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate the in vitro anti-inflammatory, anti-pruritic and antimicrobial effects of the three herbal prescription (EST, SCT, WDT), which has been traditionally used for treating leukorrhea induced by various infections in the female genital tract. Methods: In this experiment, the anti-inflammatory effects were evaluated by Nitric oxide (NO), $Interlukine-1{\beta}$ ($IL-1{\beta}$), Interlukine-2 (IL-2), Interlukine-6 (IL-6), Tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), Prostaglandin $E_2$ ($PGE_2$), Leukotriene $B_4$ ($LTB_4$) production amount and Inducible nitric oxide synthase (iNOS), Nuclear factor kappa B ($NF-{\kappa}B$), Cyclooxygenase-2 (COX-2) gene expression levels in RAW264.7 cells. And the anti-pruritic effects were evaluated by Histamine, Acetylcholine (ACh), Acetylcholinesterase (AChE), Substance P production amount in Mast cell/9 (MC/9) and Pheochromocytoma 12 (PC12) cells. The anti-microbial effect was measured by inhibition zone diameter on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger. Results: As a result of measuring anti-inflammatory efficacy, $IL-1{\beta}$, IL-2, IL-6, $TNF-{\alpha}$, $PGE_2$, and $LTB_4$ production amounts were significantly reduced in the EST, SCT, WDT extraction groups compared with the control group, and significantly decreased the amount of $NF-{\kappa}B$, iNOS, and COX-2 gene expression and the amount of Phospho-Inhibitor kappa B alpha ($p-I{\kappa}B-{\alpha}$)/Inhibitor kappa B alpha ($I{\kappa}B-{\alpha}$) and $NF-{\kappa}B$ p65 protein expression. In addition, As a result of measuring the anti-pruritic effect, the amounts of histamine, ACh and Substance P were significantly decreased, and AChE production was slightly decreased, but it's significance did not appear. Finally the anti-microbial effects of EST, SCT, WDT extraction groups against Pseudomonas aeruginosa, Candida albicans and Aspergillus niger was inhibited, however the growth of Escherichia coli and Staphylococcus aureus was not inhibited. Conclusions: These data suggest that EST, SCT, WDT can be used to treat patients with leukorrhea.

A Case Study on Performance Analysis of Antimicrobial Copper Film Attaching to Window for Responding to COVID-19 and Others (코로나19 등 대응을 위한 "유리창 부착용 항바이러스 동필름" 성능분석 사례연구)

  • Kim, Seong Je
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.1
    • /
    • pp.23-40
    • /
    • 2021
  • In the era of the global coronal 19 pandemic, there is a risk of cross-infection in hospitals at the stage where treatments and vaccines are currently being developed and marketed, so individuals should enhance their acquired immunity and generalize their living systems by the performance of copper ions in the social environment. In order to prevent the spread of infection, the need for anti-bacterial film and its efficacy were analyzed through anti-viral performance tests based on research and development cases of worldwide and immemorial time. he Korea Construction Research Institute (KCL) has received anti-bacterial performance certification and anti-viral test scores from the "National Approval Performance Certification Agency." At the time, NCCP 43326 Human Corona virus (BetaCoV/Korea/KCDC03/2020), which was approved by the Centers for Disease Control and Prevention, was introduced to ensure that the activity rate of infected cells was satisfied in the anti-viral performance test. Anti-proliferation measures for the Corona 19 virus require a quality clinical trial study comparing the experimental group within the glass space where the antiviral copper film is constructed with the comparator of the same condition without copper film.

Improvement of Antifungal Activity of for Water-Dispersed Cosmetic Formulations (수분산 제형의 화장품에 대한 항진균력 향상)

  • Lee, Ye Ji;Seo, Jae Yong;Yang, Hyeon Gap;Lee, Ju kyeong;Baek, Sol Bee;Cho, Hyun Dae;Jeong, Noh Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.2
    • /
    • pp.135-146
    • /
    • 2022
  • In order to prevent microbial contamination and safely use cosmetics, it is essential to possess preservative power. In this study, the antifungal effect was confirmed by improving the preservative system of the aqueous dispersion formulation, which has a weak preservative power against fungi, and various preservative systems were established to strengthen the preservative power against fungi. Five kinds of raw materials (sodium anisate, p-anisic acid, caprylhydroxamic acid, o-cymen-5-ol, hydroxyacetophenone) that have a benzene ring structure having a hydroxyl group and exist as protonated form in cosmetic formulations expected to improve antifungal activity in cosmetics were selected, and the minimum growth inhibitory concentration of the raw materials was determined through MIC assay. It was confirmed that the preservative power against mold was improved through the preservative efficacy test of 4 types of water dispersion formulations (cream, lotion, toner, and sun cream) in which 4 types of raw materials showing antimicrobial activity against mold were added to the preservative system. When p-anisic acid was used, it was confirmed that the preservative activity against mold was strengthened without the effect of inhibiting the preservative power against bacteria and yeast in all four formulations.