• Title/Summary/Keyword: Antigen-presenting cell

Search Result 128, Processing Time 0.029 seconds

HLA and Disease Associations in Koreans

  • Ahn, Stephen;Choi, Hee-Back;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.324-335
    • /
    • 2011
  • The human leukocyte antigen (HLA), the major histocompatibility complex (MHC) in humans has been known to reside on chromosome 6 and encodes cell-surface antigen-presenting proteins and many other proteins related to immune system function. The HLA is highly polymorphic and the most genetically variable coding loci in humans. In addition to a critical role in transplantation medicine, HLA and disease associations have been widely studied across the populations worldwide and are found to be important in prediction of disease susceptibility, resistance and of evolutionary maintenance of genetic diversity. Because recently developed molecular based HLA typing has several advantages like improved specimen stability and increased resolution of HLA types, the association between HLA alleles and a given disease could be more accurately quantified. Here, in this review, we have collected HLA association data on some autoimmune diseases, infectious diseases, cancers, drug responsiveness and other diseases with unknown etiology in Koreans and attempt to summarize some remarkable HLA alleles related with specific diseases.

B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction

  • Shin, Jung Hoon;Park, Se-Ho
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.218-221
    • /
    • 2013
  • CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although ${\alpha}$-galactosylceramide (${\alpha}$-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-${\gamma}$ by NKT cells, concomitant with a decreased level of IL-4, in the circumstance of co-culture of DCs and B Cells. Remarkably, the response promoted by B cells was dependent on CD1d expression of B cells.

(Dendritic cells in the skin) (피부의 수상돌기 세포)

  • 이민걸
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.2
    • /
    • pp.35-44
    • /
    • 1999
  • Dendritic cells(DC) are a system of highly efficient antigen-presenting cells that initiate the primary immune response. There are two kinds of dendritic cells in the skin, Langerhans cell in the epidermis and dermal dendritic cell in the dermis. The knowledge of DC, which are very important in the immune reponse of cancer, autoimmune disease, transplantation and infection, has been known through the study about Langerhans cells. In this paper, the role of Langerhans cell in the contact hypersensitivity and atopic dermatitis is discussed and culture methods of mouse Langerhans cells and human U from pheripheral blood monocytes are described.

  • PDF

Cell-cell Adhesion of Jurkat T Cells Induced by CD29 and CD98 Activation and its Application (CD29 및 CD98 활성 매개에 의한 Jurkat T 세포의 유착과 그 활용)

  • Kim, Byung-Hun;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.53 no.3
    • /
    • pp.119-124
    • /
    • 2009
  • Cell-cell adhesion managed by various adhesion molecules plays an important role in regulating functional activation of cells. This event mediates attachment of inflammatory cells to endothelial cells, interaction of antigen-presenting cells with T cells and metastatic adherence of cancer cells to epithelial tissue cells. Therefore, this cellular response is considered as one of therapeutic target to treat various cancers and inflammatory diseases. To develop proper model for evaluation of functional activation of adhesion molecules, the ability of U937 and Jurkat T cells responsive to various adhesion inducers such as phorbal-12-myristate-13-acetate (PMA), staurosporin and monoclonal antibodies to CD29, CD43 and CD98 was investigated using quantitative cell-cell adhesion assay. U937 cells made more cell-cell clusters by the treatment of antibodies to CD29 and CD43 than Jurkat T cells, while Jurkat T cells exhibited increased cell-cell adhesion ability in CD98 antibody treatment. In agreement, the surface levels of CD29 and CD98 were highly observed in U937 and Jurkat T cells, respectively. Therefore, our data suggest that Jurkat T and U937 cells can be used for model system to evaluate functional activation of adhesion molecules such as CD29 and CD98.

T cell costimulation by CD28, CTLA-4, and ICOS

  • Lee, Kyung-Mi
    • IMMUNE NETWORK
    • /
    • v.1 no.2
    • /
    • pp.95-103
    • /
    • 2001
  • T cells play a central role in the initiation and regulation of the immune response to foreign antigens. Full activation of T cells requires the engagement of T cell receptor complex (TCR) and the binding of a second costimulatory receptor to its ligand expressed on antigen presenting cells (APC). Among the molecules known to provide costimulatory function, CD28 has been the most dominant and potent costimulatory molecule. However, the function of CD28 is becoming more complex due to the recent discovery of its structural homologue, CTLA-4 and ICOS. This review summarizes the biology and physiologic function of each of these receptors, and further focuses on the biochemical mechanism underlying the function of these receptors. Complete understanding of the CD28/CTLA-4/ICOS costimulatory pathway will provide the basis for developing new therapeutic approaches for immunological dieseases.

  • PDF

Vitamin C Up-regulates Expression of CD80, CD86 and MHC Class II on Dendritic Cell Line, DC-1 Via the Activation of p38 MAPK

  • Kim, Hyung Woo;Cho, Su In;Bae, Seyeon;Kim, Hyemin;Kim, Yejin;Hwang, Young-Il;Kang, Jae Seung;Lee, Wang Jae
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.277-283
    • /
    • 2012
  • Vitamin C is an essential water-soluble nutrient which primarily exerts its effect on host defense mechanisms and immune homeostasis, but the mechanism related to immune-potentiation is poorly understood. Since dendritic cells (DCs) are known as a potent antigen presenting cell (APC) that could enhance the antigen specific immune responses, we investigate the effects of vitamin C on activation of DCs and its related mechanism by using dendritic cell lines, DC-1. First, we found that there was no damage on DC-1 by 2.5 mM of vitamin C. In the presence of vitamin C, the expression of CD80, CD86, and MHC molecules was increased, but it was decreased by the pre-treatment of SB203580, p38 MAPK-specific inhibitor. We confirmed the phosphorylation of p38 MAPK was increased by the treatment of vitamin C. Taken together, these results suggest that vitamin C could enhance the activity of dendritic cells via the up-regulation of the expression of CD80, CD86, and MHC molecules and the activation of p38 MAPK is related to this process.

The Effect of Gefitinib on Immune Response of Human Peripheral Blood Monocyte-Derived Dendritic Cells (인간 말초혈액 단핵구 유래 수지상세포의 면역반응에 미치는 Gefitinib의 영향)

  • Cho, Jin-Hoon;Kim, Mi-Hyun;Lee, Kwang-Ha;Kim, Ki-Uk;Jeon, Doo-Soo;Park, Hye-Kyung;Kim, Yun-Seong;Lee, Min-Ki;Park, Soon-Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.6
    • /
    • pp.456-464
    • /
    • 2010
  • Background: Synergistic antitumor effects of the combined chemoimmunotherapy based on dendritic cells have been reported recently. The aim of this study is to search new applicability of gefitinib into the combination treatment through the confirmation of gefitinib effects on the monocyte derived dendritic cells (moDCs); most potent antigen presenting cell (APC). Methods: Immature and mature monocyte-derived dendritic cell (im, mMoDC)s were generated from peripheral blood monocyte (PBMC) in Opti-MEM culture medium supplemented with IL-4, GM-CSF and cocktail, consisting of TNF-${\alpha}$ (10 ng/mL), IL-$1{\beta}$ (10 ng/mL), IL-6 (1,000 U/mL) and $PGE_2$ ($1{\mu}/mL$). Various concentrations of gefitinib also added on day 6 to see the influence on immature and mature MoDCs. Immunophenotyping of DCs under the gefitinib was performed by using monoclonal antibodies (CD14, CD80, CD83, CD86, HLA-ABC, HLA-DR). Supernatant IL-12 production and apoptosis of DCs was evaluated. And MLR assay with $[^3H]$-thymidine uptake assay was done. Results: Expression of CD83, MHC I were decreased in mMoDCs and MHC I was decreased in imMoDCs under gefitinib. IL-12 production from mMoDCs was decreased under $10{\mu}M$ of gefitinib sinificantly. Differences of T cell proliferation capacity were not observed in each concentration of geftinib. Conclusion: In spite of decreased expressions of some dendritic cell surface molecules and IL-12 production under $10{\mu}M$ of gefitinib, significant negative influences of gefitinib in antigen presenting capacity and T cell stimulation were not observed.

Identification of Bovine Lymphocyte Antigen DRB3.2 Alleles in Iranian Golpayegani Cattle by DNA Test

  • Mosafer, J.;Nassiry, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1691-1695
    • /
    • 2005
  • The bovine lymphocyte antigen (BoLA)-DRB3 gene encodes cell surface glycoproteins that initiate immune responses by presenting processed antigenic peptides to CD4 T helper cells. DRB3 is the most polymorphic bovine MHC class II gene which encodes the peptide-binding groove. Since different alleles favour the binding of different peptides, DRB3 has been extensively evaluated as a candidate marker for associations with various bovine diseases and immunological traits. For that reason, the genetic diversity of the bovine class II DRB3 locus was investigated by polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP). This study describes genetic variability in the BoLA-DRB3 in Iranian Golpayegani Cattle. Iranian Golpayegani Cows (n = 50) were genotyped for bovine lymphocyte antigen (BoLA)-DRB3.2 allele by polymerase chain reaction and restriction fragment length polymorphism method. Bovine DNA was isolated from aliquots of whole blood. A two-step polymerase chain reaction followed by digestion with restriction endonucleases RsaI, HaeIII and BstYI was conducted on the DNA from Iranian Golpayegani Cattle. In the Iranian Golpayegani herd studied, we identified 19 alleles.DRB3.2${\times}$16 had the highest allelic frequency (14%), followed by DRB3.2${\times}$7 (11%). Six alleles (DRB3.2${\times}$25, ${\times}$24, ${\times}$22, ${\times}$20, ${\times}$15, ${\times}$3) had frequencies = 2%. Although additional studies are required to confirm the present findings, our results indicate that exon 2 of the BoLA-DRB3 gene is highly polymorphic in Iranian Golpayegani Cattle.

Cyclooxygenase Inhibitors, Aspirin and Ibuprofen, Inhibit MHC-restricted Antigen Presentation in Dendritic Cells

  • Kim, Hyun-Jin;Lee, Young-Hee;Im, Sun-A;Kim, Kyungjae;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.10 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to relieve pain, reduce fever and inhibit inflammation. NSAIDs function mainly through inhibition of cyclooxygenase (COX). Growing evidence suggests that NSAIDs also have immunomodulatory effects on T and B cells. Here we examined the effects of NSAIDs on the antigen presenting function of dendritic cells (DCs). Methods: DCs were cultured in the presence of aspirin or ibuprofen, and then allowed to phagocytose biodegradable microspheres containing ovalbumin (OVA). After washing and fixing, the efficacy of OVA peptide presentation by DCs was evaluated using OVA-specific CD8 and CD4 T cells. Results: Aspirin and ibuprofen at high concentrations inhibited both MHC class I and class II-restricted presentation of OVA in DCs. In addition, the DCs generated in the presence of low concentrations of the drugs exhibit a profoundly suppressed capability to present MHC-restricted antigens. Aspirin and ibuprofen did not inhibit the phagocytic activity of DCs, the expression level of total MHC molecules and co-stimulatory molecules on DCs. Ibuprofen rather increased the expression level of total MHC molecules and co-stimulatory molecules on DCs. Conclusion: These results demonstrate that aspirin and ibuprofen inhibit the intracellular processing event of the phagocytosed antigen, and further suggest that prolonged administration of NSAIDs in high doses may impair the capability of DCs to present antigens in asiociation with MHC molecules.

Purification of Recombinant CTP-Conjugated Human prostatic acid phosphatase for activation of Dendritic Cell (수지상세포 활성화를 위한 세포투과 펩타이드가 결합된 재조합 전립성 산성 인산분해효소의 정제)

  • Yi, Ki-Wan;Ryu, Kang
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.80-88
    • /
    • 2009
  • Human prostatic acid phosphatase (PAP), with comprehensive homology to glandular kallikrein, are representative serum biomarkers of prostate cancer. Dendritic cell (DC), which is the potent antigen-presenting cells(APC) in the immune system, can induce strong T cell responses against viruses, microbial pathogens, and tumors. Therefore, the immunization using DC loaded with tumor-associated antigens is a powerful method for inducing anti-tumor immunity. The CTP (Cytoplasmic Transduction Peptide) technology developed by Creagene which can transport attached bio-polymers like nucleic acids or proteins into the cell with high permeation efficiency. As the active forms of PAP can mediate apoptotic processing, we used multimer forms of PAP as an inactive form for antigen pulsing of DCs. In this study, multimeric forms of CTP-rhPAP was obtained according to the advanced purification process and subsequently confirmed by gel filtration chromatography, western blot and Dynamic Light Scattering. Therefore, CTP-conjugated PA multimers transduced into the cytoplasm were efficiently presented on the cell surface without any harm effect on cells via MHC class I molecules and result in induction of a large number of effector cell.