• Title/Summary/Keyword: Antigen expression

Search Result 658, Processing Time 0.028 seconds

Subpopulations of miniature pig mesenchymal stromal cells with different differentiation potentials differ in the expression of octamer-binding transcription factor 4 and sex determining region Y-box 2

  • Jeon, Ryounghoon;Park, Sungjo;Lee, Sung-Lim;Rho, Gyu-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.515-524
    • /
    • 2020
  • Objective: Human mesenchymal stromal cells (MSCs) exhibit variable differentiation potential and can be divided accordingly into distinct subpopulations whose ratios vary with donor age. However, it is unknown whether the same is true in pigs. This study investigated MSC subpopulations in miniature pig and compared their characteristics in young (2 to 3 months) and adult (27 to 35 months) pigs. Methods: Osteogenic, chondrogenic, and adipogenic capacity of isolated MSCs was evaluated by von Kossa, Alcian blue, and oil red O staining, respectively. Cell surface antigen expression was determined by flow cytometry. Proliferative capacity was assessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Expression of marker genes was detected by quantitative real-time polymerase chain reaction. Results: Porcine MSCs comprised cells with trilineage and bilineage differentiation potential (tMSCs and bMSCs, respectively) and non-differentiating stromal cells (NDSCs). The tMSC and bMSC fractions were smaller in adult than in young pigs (63.0% vs 71.2% and 11.6% vs 24.0%, respectively, p<0.05); NDSCs showed the opposite trend (25.4% vs 4.8%; p<0.05). Subpopulations showed no differences in morphology, cell surface antigen expression, or proliferative capacity, but octamer-binding transcription factor 4 (OCT4) expression was higher in tMSCs than in bMSCs and NDSCs (p<0.05), whereas sex determining region Y-box 2 (SOX2) expression was higher in tMSCs and bMSCs than in NDSCs (p<0.05). Aging had no effect on these trends. Conclusion: Porcine MSCs comprise distinct subpopulations that differ in their differentiation potential and OCT4 and SOX2 expression. Aging does not affect the characteristics of each subpopulation but alters their ratios.

Changes of Cytokine and Chemokine mRNA Expression in Whole Blood Cells from Active Pulmonary Tuberculosis Patients after T-Cell Mitogen and Mycobacterium tuberculosis Specific Antigen Stimulation

  • Kim, Sunghyun;Park, Sangjung;Lee, Hyeyoung
    • Biomedical Science Letters
    • /
    • v.20 no.3
    • /
    • pp.162-167
    • /
    • 2014
  • Tuberculosis (TB) is one of the major global health problems and it has been estimated that in 5~10% of Mycobacterium tuberculosis (MTB)-infected individuals, the infection progresses to an active disease. Numerous cytokines and chemokines regulate immunological responses at cellular level including stimulation and recruitment of wide range of cells in immunity and inflammation. In the present study, the mRNA expression levels of eight host immune markers containing of IFN-${\gamma}$, TNF-${\alpha}$, IL-2R, IL-4, IL-10, CXCL9, CXCL10, and CXCL11 in whole blood cells from active pulmonary TB patients were measured after T-cell mitogen (PHA) and MTB specific antigens (ESAT-6, CFP-10, and TB7.7). Among the TH1-type factors, IFN-${\gamma}$ mRNA expression was peaked at 4 h, TNF-${\alpha}$ and IL-2R mRNA expression was significantly high at the late time points (24 h) in active TB patients, TH2-type cytokine (IL4 and IL10) mRNA expression levels in both active TB and healthy controls samples did not changed significantly, and the mRNA expression of the three IFN-${\gamma}$-induced chemokines (CXCL9, CXCL10, and CXCL11) were peaked at the late time points (24 h) in active TB patients after MTB specific antigen stimulation. In conclusion, the mRNA expression patterns of the TB-related immune markers in response to the T-cell mitogen (PHA) differed from those in response to MTB specific antigens and these findings may helpful for understanding the relationship between MTB infection and host immune markers in a transcripts level.

Human $CD103^+$ dendritic cells promote the differentiation of Porphyromonas gingivalis heat shock protein peptide-specific regulatory T cells

  • Kim, Myung-Jin;Jeong, Eui-Kyong;Kwon, Eun-Young;Joo, Ji-Young;Lee, Ju-Youn;Choi, Jeomil
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.5
    • /
    • pp.235-241
    • /
    • 2014
  • Purpose: Regulatory T cells (Tregs), expressing CD4 and CD25 as well as Foxp3, are known to play a pivotal role in immunoregulatory function in autoimmune diseases, cancers, and graft rejection. Dendritic cells (DCs) are considered the major antigen-presenting cells (APCs) for initiating these T-cell immune responses, of which $CD103^+$ DCs are derived from precursor human peripheral blood mononuclear cells (PBMCs). The aim of the present study was to evaluate the capacity of these PBMC-derived $CD103^+$ DCs to promote the differentiation of antigen-specific Tregs. Methods: Monocyte-derived DCs were induced from $CD14^+$ monocytes from the PBMCs of 10 healthy subjects. Once the $CD103^+$ DCs were purified, the cell population was enriched by adding retinoic acid (RA). Peptide numbers 14 and 19 of Porphyromonas gingivalis heat shock protein 60 (HSP60) were synthesized to pulse $CD103^+$ DCs as a tool for presenting the peptide antigens to stimulate $CD3^+$ T cells that were isolated from human PBMC. Exogenous interleukin 2 was added as a coculture supplement. The antigen-specific T-cell lines established were phenotypically identified for their expression of CD4, CD25, or Foxp3. Results: When PBMCs were used as APCs, they demonstrated only a marginal capacity to stimulate peptide-specific Tregs, whereas $CD103^+$ DCs showed a potent antigen presenting capability to promote the peptide-specific Tregs, especially for peptide 14. RA enhanced the conversion of $CD103^+$ DCs, which paralleled the antigen-specific Treg-stimulating effect, though the differences failed to reach statistical significance. Conclusions: We demonstrated that $CD103^+$ DCs can promote antigen-specific Tregs from naive T cells, when used as APCs for an epitope peptide from P. gingivalis HSP60. RA was an effective reagent that induces mature DCs with the typical phenotypic expression of CD103 that demonstrated the functional capability to promote antigen-specific Tregs.

Cyclooxygenase Inhibitors, Aspirin and Ibuprofen, Inhibit MHC-restricted Antigen Presentation in Dendritic Cells

  • Kim, Hyun-Jin;Lee, Young-Hee;Im, Sun-A;Kim, Kyungjae;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.10 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to relieve pain, reduce fever and inhibit inflammation. NSAIDs function mainly through inhibition of cyclooxygenase (COX). Growing evidence suggests that NSAIDs also have immunomodulatory effects on T and B cells. Here we examined the effects of NSAIDs on the antigen presenting function of dendritic cells (DCs). Methods: DCs were cultured in the presence of aspirin or ibuprofen, and then allowed to phagocytose biodegradable microspheres containing ovalbumin (OVA). After washing and fixing, the efficacy of OVA peptide presentation by DCs was evaluated using OVA-specific CD8 and CD4 T cells. Results: Aspirin and ibuprofen at high concentrations inhibited both MHC class I and class II-restricted presentation of OVA in DCs. In addition, the DCs generated in the presence of low concentrations of the drugs exhibit a profoundly suppressed capability to present MHC-restricted antigens. Aspirin and ibuprofen did not inhibit the phagocytic activity of DCs, the expression level of total MHC molecules and co-stimulatory molecules on DCs. Ibuprofen rather increased the expression level of total MHC molecules and co-stimulatory molecules on DCs. Conclusion: These results demonstrate that aspirin and ibuprofen inhibit the intracellular processing event of the phagocytosed antigen, and further suggest that prolonged administration of NSAIDs in high doses may impair the capability of DCs to present antigens in asiociation with MHC molecules.

Fagopyrum esculentum Extract Suppresses the Release of Inflammatory Mediator and Proximal Signal Events in $Fc{\varepsilon}RI$-mediated RBL-2H3 Cell Activation (교맥(蕎麥)의 비만세포 염증매개물질의 분비와 $Fc{\varepsilon}RI$ 신호전달에 미치는 효과)

  • Kang, Kyung-Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.469-474
    • /
    • 2012
  • Fagopyrum esculentum(FE) is an important food crop and medicinal plant that is used to improve diabetes, obesity, hypertension, hypercholesterolemia and constipation in Korea, but the underlying mechanisms involved in its anti-allergic activity are not fully understood. We investigated the effects on the release of inflammatory mediator and proximal signal events in $Fc{\varepsilon}RI$-mediated RBL-2H3 cell activation. FE reduced antigen (DNP-HSA)-induced release of histamine, prostaglandin D2 (PGD2) and cysteinyl Leukotriene (cysLT) in IgE-sensitized RBL-2H3 cells. In addition, it inhibited antigen-induced HDC2 and COX-2 and 5-LO mRNA expression in IgE-sensitized RBL-2H3 cells. FE also suppressed antigen-induced $Fc{\varepsilon}RI{\beta}$ and $Fc{\varepsilon}RI{\gamma}$ subunit mRNA expression in these cells. To identify the mechanisms underpinning the inhibition of release of inflammatory mediators such as histamine and PGD2 and cysLT by FE, we examined the proximal signal events of intracellular FceRI signaling molecules. FE suppressed antigen-induced phosphorylation of Lyn, Syk, LAT, $PLC{\gamma}1$, PI3K, Akt and cPLA2. Collectively, the anti-allergic effects of FE in vitro suggest its possible therapeutic application to inflammatory allergic diseases, in which its inhibition of inflammatory mediator and FceRI-dependent signaling events in mast cells may be hugely beneficial.

Fibroblastic Reticular Cell Derived from Lymph Node Is Involved in the Assistance of Antigen Process (림프절 유래 fibroblastic reticular cell의 효율적 항원처리 관련성에 대한 연구)

  • Kim, Min Hwan;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1027-1032
    • /
    • 2016
  • Antigen is substance causing disease derived from pathogen. Living organism has the immune system in terms of defense mechanism against antigen. Antigen is processed through several pathways such as phagocytosis, antibody action, complement activation, and cytotoxins by NK or cytotoxic T lymphocyte via MHC molecule. Lymph node (LN) is comprised of the complicated 3 dimensional network and several stromal cells. Fibroblastic reticular cells (FRC) are distributed in T zone for interaction with T cells. FRC produces the extra cellular matrix (ECM) into LN for ECM reorganization against pathogen infections and secretes homing chemokines. However, it has not so much been known about the involvement of the antigen process of FRC. The present report is for the function of FRC on antigen process. For this, FRC was positioned with several infected situations such as co-culture with macrophage, T cell, lipopolysaccharide (LPS) and TNFα stimulation. When co-culture between FRC with macrophage and T cells was performed, morphological change of FRC was observed and empty space between FRCs was made by morphological change. The matrix metallo-proteinase (MMP) activity was up-regulated by Y27632 and T cells onto FRC. Furthermore, inflammatory cytokine, TNFα regulated the expression of adhesion molecules and MHC I antigen transporter in FRC by gene chip assay. NO production was elevated by FRC monolayer co-cultured with macrophage stimulated by LPS. GFP antigen was up-taken by macrophage co-cultured with FRC. Collectively, it suggests that FRC assists of the facilitation of antigen process and LN stroma is implicated into antigen process pathway.

Antigen Receptor-Mediated Induction of Cytolytic T cell-Specific Transcripts Expression (항원수용체자극에 의한 Cytolytic T cell 특이전사체 표현유도)

  • Kim, Gwan-Shik;Lancki, David W.;Kwon, Byoung-Se
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.45-49
    • /
    • 1987
  • Employing the approach to isolate the genes expressed preferentially in cytolytic T cell (CTL) but not in other types of cell, 3 CTL-specific cDNAs were recently cloned. To characterize these cDNA clones in relation to CTL activation, their expression pattern after T cell antigen receptor (TCR) or interleukin 2 (IL-2) stimulation were investigated by RNA blot analysis of cloned CTL L3 cells. Transcripts level of two cDNA clones were markedly elevated by TCR stimulation but not by IL-2. In addition, transcripts expression of both clones were abrogated by cyclosporin A treatment. These results indicated that gene activation mediated by TCR is distinct from that mediated by IL-2 and imply that those two unidentified cDNA clones are related to TCR-mediated, IL-2-independent but cyclosporin A-sensitive pathway for CTL activation.

  • PDF

A Homeotic Gene, Hoxc8, Regulates the Expression of Proliferating Cell Nuclear Antigen in NIH3T3 Cell

  • Min, Hye-Hyun;Kang, Myeng-Mo;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.13 no.3
    • /
    • pp.239-244
    • /
    • 2007
  • Hoxc8 is one of the homeotic developmental control genes regulating the expression of many downstream target genes, through which animal body pattern is established during embryonic development. In previous proteomics analysis, proliferating cell nuclear antigen (PCNA) which is also known as cyclin, has been implied to be regulated by Hoxc8 in F9 murine embryonic teratocarcinoma cell. When the 5' upstream region of PCNA was analyzed, it turned out to contain 20 Hox core binding sites (ATTA) in about 1.17 kbp (kilo base pairs) region ($-520{\sim}-1690$). In order to test whether this region is responsible for Hoxc8 regulation, the upstream 2.3 kbp fragment of PCNA was amplified through PCR and then cloned into the pGL3 basic vector containing a luciferase gene as a reporter. When the luciferase activity was measured in the presence of effector plasmid (pcDNA : c8) expressing murine Hoxc8, the PCNA promoter driven reporter activity was reduced. To confirm whether this reduction is due to the Hoxc8 protein, the siRNA against Hoxc8 (5'-GUA UCA GAC CUU GGA ACU A-3' and 5'-UAG UUC CAA GGU CUG AUA C-3') was prepared. Interestingly enough, siRNA treatment up regulated the luciferase activity which was down regulated by Hoxc8, indicating that Hoxc8 indeed regulates the expression of PCNA, in particular, down regulation in NIN3T3 cells. These results altogether indicate that Hoxc8 might orchestrate the pattern formation by regulating PCNA which is one of the important proteins involved in several processes such as DNA replication and methylation, chromatin remodeling, cell cycle regulation, differentiation, as well as programmed cell death.

  • PDF

Comparison of polymerase chain reaction for antigen receptor gene rearrangement and flow cytometric analysis for the diagnosis of canine lymphoma

  • Song, Ru-Hui;Yu, Do-Hyeon;Kim, Jun-Hwan;Lee, Hyun-Seok;Lee, Da-Mi;Park, Chul;Yu, Il-Jung;Park, Jin-Ho
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.3
    • /
    • pp.265-271
    • /
    • 2011
  • Lymphoma is the most common hematopoietic malignancy in dogs. Diagnosis of lymphoma is classically performed by morphological assessment and immunohistochemistry. But some cases in the early stage are difficult to distinguish and need more objective and accurate methods. So, Polymerase chain reaction (PCR) for antigen receptor rearrangements (PARR) and flow cytometric immunophenotype of lymphoma have been developed continuously. In this study, we performed these two methods to classify lymphoma type in 3 cases. According to PARR analysis, B cell origin lymphoma was diagnosed in two of three cases by testing PBMC and lymph node. All fine needle aspiration (FNA) samples of lymph nodes had high expression of CD21 on >88% of total cell population and PBMC samples also showed high expression of CD21 on >30% of total lymphocytes in those two cases, while the expression of CD3, CD4 and CD8 was absent. These results suggest that concurrent use of PARR and flow cytometric immunophenotype is more effective and valuable tool for the diagnosis and monitoring of canine lymphoma patients.