• Title/Summary/Keyword: Antifungal substances

Search Result 129, Processing Time 0.025 seconds

In Vivo Antifungal Activities of 57 Plant Extracts Against Six Plant Pathogenic Fungi

  • Choi, Gyung-Ja;Jang, Kyoung-Soo;Kim, Jin-Seok;Lee, Seon-Woo;Cho, Jun-Young;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.184-191
    • /
    • 2004
  • Methanol extracts of fresh materials of 57 plants were screened for in vivo antifungal activity against Magna-porthe grisea, Corticium sasaki, Botrytis cinerea, Phyto-phthora infestans, Puccinia recondita, and Blumeria graminis f. sp. hordei. Among them, seven plant extracts showed disease-control efficacy of more than 90% against at least one of six plant diseases. None of the plant extracts was highly active against tomato gray mold. The methanol extracts of Chloranthus japonicus (roots) (CjR) and Paulownia coreana (stems) (PcS) displayed the highest antifungal activity; the CjR extract controlled the development of rice blast, rice sheath blight, and wheat leaf rust more than 90%, and tomato gray mold and tomato late blight more than 80%. The PcS extract displayed control values of more than 90 % against rice blast, wheat leaf rust, and barley powdery mildew and more than 80% against tomato gray mold. The extract of PcS also had a curative activity against rice sheath blight and that of CjR had a little curative activity against rice blast. On the other hand, the extract of Rumex acetocella roots reduced specifically the development of barley powdery mildew. Further studies on the characterization of antifungal substances in antifungal plant extracts are underway and their disease-control efficacy should be examined under greenhouse and field conditions.

Griseofulvin from Xylaria sp. Strain F0010, an Endophytic Fungus of Abies holophylla and its Antifungal Activity Against Plant Pathogenic Fungi

  • PARK, JOONG-HYEOP;CHOI, GYUNG-JA;LEE, SEON-WOO;LEE, HYANG-BURM;KIM, KYOUNG-MO;JUNG, HACK-SUNG;JANG, KYOUNG-SOO;CHO, KWANG-YUN;KIM, JIN-CHEOL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.112-117
    • /
    • 2005
  • Abstract Griseofulvin has been used as an antifungal antibiotic for the treatment of mycotic diseases of humans and veterinary animals. The purpose of this work was to identify a griseofulvin-producing endophytic fungus from Abies holophylla and evaluate its in vivo antifungal activity against plant pathogenic fungi. Based on nuclear ribosomal ITS1-5.8SITS2 sequence analysis, the fungus was identified and labeled as Xylaria sp. F0010. Two antifungal substances were purified from liquid cultures of Xylaria sp. F0010, and their chemical identities were determined to be griseofulvin and dechlorogriseofulvin through mass and NMR spectral analyses. Compared to dechlorogriseofulvin, griseofulvin showed high in vivo and in vitro antifungal activity, and effectively controlled the development of rice blast (Magnaporthe grisea), rice sheath blight (Corticium sasaki), wheat leaf rust (Puccinia recondita), and barley powdery mildew (Blumeria graminis f. sp. hordei), at doses of 50 to 150 ${\mu}$g/ml, depending on the disease. This is the first report on the production of griseofulvin and dechlorogriseofulvin by Xylaria species.

Genomics and LC-MS Reveal Diverse Active Secondary Metabolites in Bacillus amyloliquefaciens WS-8

  • Liu, Hongwei;Wang, Yana;Yang, Qingxia;Zhao, Wenya;Cui, Liting;Wang, Buqing;Zhang, Liping;Cheng, Huicai;Song, Shuishan;Zhang, Liping
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.417-426
    • /
    • 2020
  • Bacillus amyloliquefaciens is an important plant disease-preventing and growth-promoting microorganism. B. amyloliquefaciens WS-8 can stimulate plant growth and has strong antifungal properties. In this study, we sequenced the complete genome of B. amyloliquefaciens WS-8 by Pacific Biosciences RSII (PacBio) Single Molecule Real-Time (SMRT) sequencing. The genome consists of one chromosome (3,929,787 bp) and no additional plasmids. The main bacteriostatic substances were determined by genome, transcriptome, and mass spectrometry data. We thereby laid a theoretical foundation for the utilization of the strain. By genomic analysis, we identified 19 putative biosynthetic gene clusters for secondary metabolites, most of which are potentially involved in the biosynthesis of numerous bioactive metabolites, including difficidin, fengycin, and surfactin. Furthermore, a potential class II lanthipeptide biosynthetic gene cluster and genes that are involved in auxin biosynthesis were found. Through the analysis of transcriptome data, we found that the key bacteriostatic genes, as predicted in the genome, exhibited different levels of mRNA expression. Through metabolite isolation, purification, and exposure experiments, we found that a variety of metabolites of WS-8 exert an inhibitory effect on the necrotrophic fungus Botrytis cinerea, which causes gray mold; by mass spectrometry, we found that the main substances are mainly iturins and fengycins. Therefore, this strain has the potential to be utilized as an antifungal agent in agriculture.

Antifungal Substances from Streptomyces sp. A3265 Antagonistic to Plant Pathogenic Fungi

  • Nguyen, Van Minh;Woo, E-Eum;Kim, Ji-Yul;Kim, Dae-Won;Hwang, Byung Soon;Lee, Yoon-Ju;Lee, In-Kyoung;Yun, Bong-Sik
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.333-338
    • /
    • 2015
  • In a previous study, we identified a Streptomyces sp., A3265, as exhibiting potent antifungal activity against various plant pathogenic fungi, including Botrytis cinerea, Colletotrichum gloeosporioides, and Rhizoctonia solani. This strain also exhibited a biocontrolling effect against ginseng root rot and damping-off disease, common diseases of ginseng and other crops. In this study, we isolated two antifungal substances responsible for this biocontrolling effect via Diaion HP-20 and Sephadex LH-20 column chromatography, medium pressure liquid chromatography, and high-performance liquid chromatography. These compounds were identified as guanidylfungin A and methyl guanidylfungin A by spectroscopic methods. These compounds exhibited potent antimicrobial activity against various plant pathogenic fungi as well as against bacteria.

Analysis on Antifungal Activity of Paulownia-Wood Storage Box and Application of Natural Biocide for the Activity Enhancement (오동나무상자의 항균활성 분석 및 활성 증진을 위한 천연 살생물제 적용연구)

  • Chung, Yong-Jae;Kang, So-Yeong;Choi, Yun-A
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.75-83
    • /
    • 2008
  • In order to assess antifungal activity of a wooden storage box, which was made of Paulownia tomentosa and used for keeping ancient documents, antifungal activity of volatile organic compounds emitted from the box was investigated along with qualitative analysis on major substances of the compounds. After collecting floating microorganisms inside air tester, the fungal activity was assessed by counting the number of colonies growing on TSA media. Compared to the control which collected 85 colonies from outdoor, 72 colonies were observed showing reduction rate of 14.82%. Through GC/MS and TDS system analysis, limonene was detected from the volatile organic compounds as characteristic features. When the fungal activity was assessed through fumigation by adding natural biocide BI and BII containing eugenol and anethole as major substances, both biocides showed a strong fungal activity with respectively 92.6%(inside the box) and 99.9%(outdoor) of reduction rate. Although these results didn't clarify antifungal activity of the volatile organic compounds emitted from the Paulownia-wood storage box and their functional components, it was at least confirmed that there is application possibility of natural biocide to use for preservation of ancient documents with increased efficiency in controlling pests of wooden storage boxes.

  • PDF

Selection and Identification of Phytohormones and Antifungal Substances Simultaneously Producing Plant Growth Promoting Rhizobacteria from Microbial Agent Treated Red-pepper Fields (미생물제제시용 고추경작지로부터 식물생장홀몬과 항진균물질을 동시에 생산하는 식물생장촉진근권세균의 선발 및 동정)

  • Jung, Byung-Kwon;Lim, Jong-Hui;An, Chang-Hwan;Kim, Yo-Hwan;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.190-196
    • /
    • 2012
  • In this study, a total of more than 1,000 bacteria, including 739 species of aerobic bacteria, 80 species of urease producing bacteria and 303 species of photosynthetic bacteria, were isolated from red-pepper field soils located in the Gyeongsan Province of the Republic of Korea. Amongst these, 158 species of aerobic bacteria, 70 species of urease producing bacteria and 228 species of photosynthetic bacteria were found to be auxin producing soil bacteria through quantification analysis with the Salkowski test. The latter groupings were then tested for antifungal activities to ${\beta}$-Glucanase and siderophore using CMC congo red agar and CAS blue agar media. In addition, the selected strains were examined for antifungal activity against various phytopathogenic fungi on PDN agar media. Six strains; BCB14, BCB17, C10, HA46, HA143, and HJ5, were noted for their ability to both produce auxin and act as antifungal substances. 16S rDNA sequence comparison analyses of these six strains identified them as Bacillus subtilis BCB14, B. methylotrophicus BCB17, B. methylotrophicus C10, B. sonorensis HA46, B. subtilis HA143, and B. safensis HJ5.

Isolation and Optimal Culture Conditions of Brevibacillus sp. KMU-391 against Black Root Pathogens Caused by Didymella bryoniae (덩굴마름병원균인 Didymella bryoniae의 생물학적 방제를 위한 길항세균의 분리 및 특성)

  • Park Sung-Min;Jung Hyuck-Jun;Kim Hyun-Soo;Yu Tae-Shick
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.135-141
    • /
    • 2006
  • We isolated a bacterium which produces antifungal substances from the Sanktpeterburg soils at Russia. The iso-lated strain was identified as Brevibacillus sp. and shown a strong antifungal activity on plant pathogenic fungi. Brevibacillus sp. KMU-391 produced maximum level of antifungal substances under incubation aerobically at $30^{\circ}C$ for 48 hours in trypticase soybean broth containing 1.0% sucrose and 1.0% polypeptone at 180 rpm and initiated pH adjusted to 7.0. Precipitate of culture broth by $30{\sim}60%$ ammonium sulfate precipitation exhibited strong antifungal activity against Didymella bryoniae by dry cell weight. Butanol extract of cultured broth also shown fungal growth inhibitory activity against Botrytis cinerea KACC 40573, Botrytis fabae KACC 40962, Colletotrichum gloeosporioides KACC 40804, Colletotrichum orbiculare KACC 40808, Didymella bryoniae KACC 40669, Fusarium graminearum KACC 41040, Fusarium oxysporum KACC 40037, Fusarium oxysporum KACC 40052, Fusarium oxysporum f, sp. radicis-Iycopersici KACC 40537, Fusarium oxysporum KACC 40902, Monosporascus cannonballus KACC 40940, Phytophthora camvibora KACC 40160, Rhizoctonia solani AG-1(IA) KACC 40101, Rhizoctonia solani AG-4 KACC 40142, and Scleotinia scleotiorum KACC 41065 by agar diffusion method.

Bacillus subtilis YB-70 as a Biocontrol Agent of Fusarium solani causing Plant Root-Rot

  • KIM, YONG-SU;HO-SEONG LIM;SANG-DAL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.68-74
    • /
    • 1994
  • A bacterial strain YB-70 which has powerful biocontrol activity against Fusarium solani causing plant root-rot resulting in considerable losses of many economical crops was isolated and selected from over 500 isolates from a ginseng rhizosphere in suppressive soil, and identified as a strain of Bacillus subtilis. In several biochemical and in vitro antibiosis tests on F. solani with culture filterates from B. subtilis YB-70, our data strongly indicated metabolites which mediated inhibition of the fungal growth were presumed to be heat-stable, micromolecular, and ethyl alcohol solutable antifungal substances. Suppression of root-rot by B. subtilis YB-70 was demonstrated in pot trials with eggplant (Solanum melongena L) seedlings. Treatment of the seedling with the bacterial suspension (1.7~1.9$\times$$10^5$ CFU/g) in F. solani-infested soil significantly reduced disease incidences by 68 to 76% after 25 to 30 days. The results supported that B. subtilis YB-70 have excellent potentials as a biocontrol agent.

  • PDF

Studies on the Antifungal Antibiotics Produced by a Streptomyces sp. (Part 3) Microbiological Properties of the Strain (Streptomyces sp.가 생산하는 항진균성 항생물질에 관한 연구 (제 3 보)생산균주의 미생물학적 성질)

  • Ko, Young-Hee;Jung, Sun-Hee;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.2
    • /
    • pp.117-122
    • /
    • 1982
  • Streptomyces sp. No. 297 previously isolated from a soil sample collected in Mt. Soyo of Kyeongi Province, which produced strong antifungal substances t-cinnamamide and another unknown compound, was identified as Streptomyces griseorubiginosus var. soyoensis. The results of examinations in morphologial, physiological and cultural characteristics of the strain are presented.

  • PDF

Numerical Identification of Streptomyces fIaveus Producing Antibiotic Substances Inhibitory to Plant Pathogenic Fungi

  • Lee, Jung-Yeop;Kim, Beom-Seok;Hwang, Byung-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.6
    • /
    • pp.324-334
    • /
    • 1995
  • The actinomycete strain A 11 was antagonistic to plant pathogenic fungi Phytophthora capsid and Magnaporthe grisea. Based on the diaminopimelic acid (DAP) type and morphological characteristics examined by scanning electron microscopy, the strain A 11 was confirmed to belong to the genus Streptomyces. Based on Willcox probability and similarity level, the strain A 11 was numerically identified as Streptomyces flaveus using TAXON program of Ward and Goodfellow. Antibiotic production of S. flaveus strain A 11 was most favorable when cultured on glycerol yeast extract peptone (GYP) agar for 20 days at $28^{\circ}C$. The crude antibiotics from solid GYP agar cultures of the strain A 11 were most effective against Phytophthora capsici and Sclerotinia sclerotiorum among the fungi tested. Antifungal activity of the antibiotics against Alternaria solani, Botryosphaeria dothidea, Cercospora capsici, Magnaporthe grisea, and Rhizoctonia solani was somewhat high, whereas Colletotrichum gloeosporioides and Fusarium oxysporum f. sp. cucumerinum were rarely inhibited even at high concentrations.

  • PDF