• Title/Summary/Keyword: Antifungal bacteria

Search Result 291, Processing Time 0.026 seconds

The Study of Application of Bio-Surfactant Producing Bacteria for Growing Crop in Oil Spilled Soil (기름으로 오염된 토양에서 작물생육을 위한 계면활성제 생산 Bacteria의 활용에 관한 연구)

  • Hwang, Cher-Won;Chang, Hae-Won;Choe, Yong-Rak
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.944-947
    • /
    • 2007
  • Bacillus sp.LPO3 (producing emulsifying substances such as bio-surfactant) was used as a bio-control agent to degrade hydrocarbon (gasoline in oil spilled crop soil). The soil (brought from fertilizer store)was mixed with gasoline-spilled soil (made with Diatomaceous Earth, Sigma.U.S.A). The study was conducted for a period of 13 days, 13 days during which bacterial growth, hydrocarbon degradation and growth parameters of Bacillus sp.LP03 including shoot and root length were studied. We found that the effective of bacterial producing substance might bio-surfactants let the plants survive even more promote the growth of shoot and root length and showed antifungal activity against gray mold. Without the bacteria, they couldn't grow in oil-spilled soil not even survive. According to the results of the above experiments, we can see with following results, hydrocarbon in gasoline was reduced, day by day, then RNA dot blotting was done and it fit the results we had done. Finally, this Bacteria(producing bio-surfactant) were found to have effective bio-control agent for cropping in oil spilled soil and infected by gray mold.

Antimicrobial Properties of Cement Matrix using Pine Needle Extract (솔잎추출물을 혼입한 시멘트 경화체의 항균류 저항 특성)

  • Kim, Ho-Jin;Jung, Hyeon-Eui;Lim, Dong-Hyun;Han, Song-Yi;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.117-123
    • /
    • 2022
  • Recently, due to COV ID-19, many people are spending most of their time indoors. So, there is a rising interest on the indoor air quality in the field of building construction. The main sources for the indoor air pollution are human indoors activity, building materials, living supplies and the polluted air from outdoor. The Korean government has designated 17 indoor air pollutants including fine dust, total airborne bacteria, fungi and carbon dioxide, etc.. Most people are always exposed to assorted bacteria and molds in our daily life, because indoor environment for human, moderate temperature are humidity, it is favourable to the growth of most of bacteria and fungi. Pine needles have an antibacterial effect against bacteria and fungi. In this study, the antibacterial activity against bacteria and fungi was tested by cement matrix using pine needle extract. As a result, the cement matrix using pine needle extract showed antibacterial activities against bacteria, but in the case of fungi, it did not show antifungal activity.

Anthocyanins from Clitoria ternatea Attenuate Food-Borne Penicillium expansum and its Potential Application as Food Biopreservative

  • Leong, Chean-Ring;Azizi, Muhammad Afif Kamarul;Taher, Md Abu;Wahidin, Suzana;Lee, Kok-Chang;Tan, Wen-Nee;Tong, Woei-Yenn
    • Natural Product Sciences
    • /
    • v.23 no.2
    • /
    • pp.125-131
    • /
    • 2017
  • Clitoria ternatea or Commonly known blue pea, is a perennial climber crop native to Asian countries. The current study was aimed to evaluate the antimicrobial activity C. ternatea extract on food borne microorganisms and its antifungal effect on Penicillium expansum. The extract showed significant antimicrobial activity against 3 Gram positive bacteria, 2 Gram negative bacteria and 1 filamentous fungus on disc diffusion assay. The extract also showed good biocidal effect on all Gram positive bacteria tested and P. expansum. However, the kill curve analysis revealed that the fungicidal activity of the extract against P. expansum conidia was depend on the concentration of the extract and the time of exposure of the conidia to the extract. The scanning electron micrograph of the extract treated P. expansum culture showed alterations in the morphology of fungal hyphae. The germination of P. expansum conidia was completely inhibited and conidial development was totally suppressed by the extract, suggesting the possible mode of action of anthocyanin. Besides, the extract also exhibited 5.0-log suppression of microbial growth relative to control in the rice model. The results indicate the potential use of the C. ternatea anthocyanin as food biopreservative.

Application of Rhizobacteria for Plant Growth Promotion Effect and Biocontrol of Anthracnose Caused by Colletotrichum acutatum on Pepper

  • Lamsal, Kabir;Kim, Sang Woo;Kim, Yun Seok;Lee, Youn Su
    • Mycobiology
    • /
    • v.40 no.4
    • /
    • pp.244-251
    • /
    • 2012
  • In vitro and greenhouse screening of seven rhizobacterial isolates, AB05, AB10, AB11, AB12, AB14, AB15 and AB17, was conducted to investigate the plant growth promoting activities and inhibition against anthracnose caused by Colletotrichum acutatum in pepper. According to identification based on 16S rDNA sequencing, the majority of the isolates are members of Bacillus and a single isolate belongs to the genus Paenibacillus. All seven bacterial isolates were capable of inhibiting C. acutatum to various degrees. The results primarily showed that antibiotic substances produced by the selected bacteria were effective and resulted in strong antifungal activity against the fungi. However, isolate AB15 was the most effective bacterial strain, with the potential to suppress more than 50% mycelial growth of C. acutatum in vitro. Moreover, antibiotics from Paenibacillus polymyxa (AB15) and volatile compounds from Bacillus subtilis (AB14) exerted efficient antagonistic activity against the pathogens in a dual culture assay. In vivo suppression activity of selected bacteria was also analyzed in a greenhouse with the reference to their prominent in vitro antagonism efficacy. Induced systemic resistance in pepper against C. acutatum was also observed under greenhouse conditions. Where, isolate AB15 was found to be the most effective bacterial strain at suppressing pepper anthracnose under greenhouse conditions. Moreover, four isolates, AB10, AB12, AB15, and AB17, were identified as the most effective growth promoting bacteria under greenhouse conditions, with AB17 inducing the greatest enhancement of pepper growth.

A Rapid Radicle Assay for Prescreening Antagonistic Bacteria Against Phytophthora capsici on Pepper

  • Chang, Sung-Hwan;Kwack, Min-Sun;Kim, Yun-Sung;Lee, Jung-Yeop;Kim, Ki-Deok
    • Mycobiology
    • /
    • v.29 no.4
    • /
    • pp.218-223
    • /
    • 2001
  • A rapid radicle assay for prescreening antagonistic bacteria to Phytophthora capsic4 causal agent of Phytophthora blight of pepper was developed. Sixty-four bacterial strains with in vitro antifungal activity selected out of 1,400 strains isolated from soils of Ansung, Chunan, Koyang, and Paju, Korea in 1998 were used for development of the bioassay. Uniformly germinated pepper seeds dipped in bacterial cells for 3 hours were placed near the edges of growing mycelia of P. capsici on water agar containing 0.02% glucose. Five-week-old pepper plants(cv. Nockwang) were inoculated to compare with results of the radicle assay developed in this study. For plant inoculation, pepper seeds were sown in potting mixtures incorporated with the bacterial strains, then transplanted into steam-sterilized soils 3 weeks later. Plants were hole-inoculated with zoospores of P. capsici 2 weeks after transplanting. Disease incidence and severity were determined in radicle and plant assessments, respectively. In radicle assay, six strains, GK-B15, GK-B25, OA-B26, OA-B36, PK-B09, and VK-B14 consistently showed the significant(P=0.05) disease reduction against radicle infection by the fungus, four of which also did in plant assessments. Strains OA-B36 and GK-B15 consistently reduced the fungal infection in both the radicle assay and the plant assessment. Therefore, prescreening strains using the radicle assay developed in this study followed by plant assay could reduce time and labor, and improved the possibility of selecting antagonistic bacteria for control of Phytophthora blight of peppers.

  • PDF

Antibacterial and Whitening Activities of Coffea arabica Ethanol Extract (커피 에탄올 추출물의 항균 및 미백활성)

  • Kim, In Hae;Lee, Jae Hwa
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.245-251
    • /
    • 2018
  • In this study, Coffea arabica ethanol extract (CAE) was tested for possible functional cosmetic agent. Whitening effect was measured by tyrosinase inhibition assay, and anti-oxidant activity was checked by SOD-like activity. SOD-like activity of CAE showed $94.8{\pm}6.2%$ at $500{\mu}g/mL$. The anti-bacterial activities CAE was evaluated against three different gram-positive bacteria and six gram-negative bacteria including MRSA strains. CAE exhibited in vitro broad spectrum antimicrobial activities of gram-negative bacteria without antifungal activity. CAE was strong exhibited against MRSA CCARM3561. The tyrosinase and L-DOPA inhibitory activities of the CAE lower than those positive control arbutin. CAE reduced melanin contents of B16-F10 melanoma cell in a dose dependent manner and decrease about 89.2% at a concentration $100{\mu}g/mL$. These result highlight the potential of coffee extract as a naturally active and non-toxic antibacterial suitable for cosmetic applications.

Antimicrobial efficacy and safety analysis of zinc oxide nanoparticles against water borne pathogens

  • Supraja, Nookala;Avinash, B.;Prasad, T.N.V.K.V.
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.127-140
    • /
    • 2017
  • Metal nanoparticles have been intensively studied within the past decade. Nano-sized materials have been an important subject in basic and applied sciences. Zinc oxide nanoparticles have received considerable attention due to their unique antibacterial, antifungal, and UV filtering properties, high catalytic and photochemical activity. In this study, microbiological aspects of scale formation in PVC pipelines bacteria and fungi were isolated. In the emerging issue of increased multi-resistant properties in water borne pathogens, zinc oxide (ZnO) nanoparticle are being used increasingly as antimicrobial agents. Thus, the minimum bactericidal concentration (MBC) and minimum fungal concentration of ZnO nanoparticles towards pathogens microbe were examined in this study. The results obtained suggested that ZnO nanoparticles exhibit a good anti fungal activity than bactericidal effect towards all pathogens tested in in-vitro disc diffusion method (170 ppm, 100 ppm and 30 ppm). ZnO nanoparticles can be a potential antimicrobial agent due to its low cost of production and high effectiveness in antimicrobial properties, which may find wide applications in various industries to address safety issues. Stable ZnO nanoparticles were prepared and their shape and size distribution characterized by Dynamic light scattering (35.7 nm) and transmission electron microscopic TEM study for morphology identification (20 nm), UV-visible spectroscopy (230 nm), X-ray diffraction (FWHM of more intense peak corresponding to 101 planes located at $36.33^{\circ}$ using Scherrer's formula), FT-IR (Amines, Alcohols, Carbonyl and Nitrate ions), Zeta potential (-28.8). The antimicrobial activity of ZnO nanoparticles was investigated against Bacteria and Fungi present in drinking water PVC pipelines biofilm. In these tests, Muller Hinton agar plates were used and ZnO nanoparticles of various concentrations were supplemented in solid medium.

A Comparative Study on the Antimicrobial Activities of the Seeds of Prunus Species (한국산 Prunus 속 종자의 항균성과 청산배당체에 관한 연구)

  • Lee, Ihn-Rhan;Kim, Kyoung-Sook
    • Korean Journal of Pharmacognosy
    • /
    • v.19 no.2
    • /
    • pp.120-126
    • /
    • 1988
  • HPLC analysis of three Prunus species, Armeniacae Semen. Persicae Semen, and Mume Semen, showed that 24. 06 mg/g, 5. 79 mg/g and 3/ 10 mg/g of amygdalin in the MeOH extract and 3. 59 mg/g, 5. 41 mg/g and 13. 48 mg/g of benzaldehyde in the MeOH extract hydrolyzed with ${\beta}-glucosidase$ were contained respectively. The MeOH extract of Mume Semen showed strong antibacterial activities against two species of bacteria (E. coli and B. subtilis) while that of Armeniacae Semen showed mild, and that of Persicae Semen showed no effect. Against A. niger, a strong antifungal activity was observed with Armeniacae Semen and only mild activities with Persicae Semen and Mume Semen. None oh the three inhibited the growth of S. cervisiae. The above results may possibly be suggestive of the correlationships between the contents of amygdalin and benzaldehyde in the test extracts with the antimicrobial potencies.

  • PDF

Studies on antibiotics against Wheat black rust (I) (밀의 항흑수병 항생물질의 연구 1)

  • 정영기
    • Korean Journal of Microbiology
    • /
    • v.19 no.3
    • /
    • pp.108-114
    • /
    • 1981
  • In order to isolate microorganisms which produce antibiotics aganist wheat black rust, some bacteria, molds, and actinomycetes were isolated from soils and screened for the production of antibiptics against wheat black rust. Beacuse wheat black rust-puccinia graminis--is a complete parsitic mold which can't grow in artifical medium, new method for the screening of antibiotic producing microorgsnisms against wheat black rust developed by using live leaves of wheat. With new method, a strain No. $480HS_{20}$ which produces a substnace having strong and Puccinia graminis activity and very narrow antimicrobial spectrum was isolated. the substance produced by the strain No.$480HS_{20}$ had better anti Puccinia graminis activity than any other known antifungal antibotics such as kasurgamycin, balasticidins, actidione, antimycin, ologomycin. And the substance was observed to be very stable at heat and ultraviolet light. The strain was indentified as Bacillus subtilis.

  • PDF

Antimicrobial activity of sophorolipid

  • Kim, Gab-Jung;Kim, Young-Bum;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.247-249
    • /
    • 2000
  • Antimicrobial activity of sophorolipid produced by Candida bombicola ATCC 22214 was investigated, Minimum inhibitory concentration of sophorolipid to Propionibacterium acne and Bacillus subtilis were 0.5 ppm and 4 ppm, respectively. However no antimicrobial activity to E. coli was detected. Indicating the antimicrobial activity of sophorolipid only toward gram positive bacteria. Antifungal activity of sophorolipid was also detected in the hyphae growth assay for Botrytis cinerea. Malate dehydrogenase, a cytoplasmic enzyme, of B. subtilis was remarkably increased with the sophorolipid treatment, indicating the leakage of membrane by sophorolipid. This result shows the potentials of sophorolipid as mild, non-toxic antimicrobial agent.

  • PDF