• Title/Summary/Keyword: Antidementia

Search Result 16, Processing Time 0.02 seconds

Nutritional and Physicochemical Characteristics of the Antidementia Acetylcho-linesterase-Inhibiting Methanol Extracts from Umbilicaria esculenta

  • Lee, Ji-Su;Min, Gyung-Hun;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.37 no.3
    • /
    • pp.203-206
    • /
    • 2009
  • To develop new antidementia nutraceuticals, a potent acetylcholinesterase (AChE)-inhibiting extract was screened from various extracts of nutritional mushrooms and lichens nutritional and its physicochemical properties were investigated. Among the several extracts tested, methanol extracts of Umbilicaria esculenta fruiting body showed the highest AChE inhibitory activity of 22.4%. U. esculenta AChE inhibitor was maximally extracted when fruiting bodies were treated with 80% methanol at $40^{\circ}C$ for 18 h. The methanol extracts contained 18.9% crude lipid, 18.8% crude protein, and 11.6% total sugar. In addition, they contained 444 mg/g glutamic acid, 44 mg/g histidine, and 41 mg/g aspartic acid. The methanol extracts were soluble in a solution of methanol and 20% dimethylsulfoxide, insoluble in n-hexane, chloroform, and water, and were stable at $20{\sim}60^{\circ}C$ and pH $1.0{\sim}5.0$ for 1 h.

Screening and Optimal Extraction of a New Antidementia β-Secretase Inhibitor-Containing Mushroom

  • Seo, Dong-Soo;Lee, Eun-Na;Seo, Geon-Sik;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.36 no.3
    • /
    • pp.195-197
    • /
    • 2008
  • To produce a potent antidementia $\beta$-secretase inhibitor from a mushroom, the $\beta$-secretase inhibitory activities of various mushroom extracts were determined. Methanol extracts of Lentinula edodes exhibited the highest inhibitory activity (40.1%). The inhibitor was maximally extracted when a fruiting body of L. edodes was treated with 50% methanol at 40$^{\circ}C$ for 24 h.

Characterization of a New Antidementia $\beta$-Secretase Inhibitory Peptide from Rubus coreanus

  • Lee, Dae-Hyoung;Lee, Dae-Hyung;Lee, Jong-Soo
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.489-494
    • /
    • 2008
  • In order to develop a potent antidementia $\beta$-secretase inhibitor from phytochemicals, $\beta$-secretase inhibitory activities of extracts from many medicinal plants and herbs were determined. Water extracts from Rubus coreanus showed the highest $\beta$-secretase inhibitory activity of 84.5%. After purification of the $\beta$-secretase inhibitor from R. coreanus using systematic solvent extraction, ultrafiltration, Sephadex G-10 column chromatography, and reverse-phase high performance liquid chromatography (HPLC), a purified $\beta$-secretase inhibitor with $IC_{50}$ inhibitory activity of $6.3{\times}10^3\;ng/mL$ ($1.56{\times}10^{-6}\;M)$ was obtained with a 0.08% solid yield. The molecular mass of the purified $\beta$-secretase inhibitor was estimated to be 576 Da by liquid chromatography-mass spectrometry (LC-MS) and $\beta$-secretase inhibitor also is a new tetrapeptide with the sequence Gly-Trp-Trp-Glu. The purified $\beta$-secretase inhibitory peptide inhibited $\beta$-secretase non-competitively and also show less inhibition on trypsin, however no inhibition on other proteases such as $\alpha$-secretase, chymotrypsin, and elastase.

Optimal Extraction Condition and Characterization of Antidementia Acetylcholinesterase Inhibitor from Job's Tears (Coix lachrymajobi L.) (율무로부터 항치매성 Acetylcholinesterase 저해물질의 최적추출 조건 및 특성)

  • Seo, Dong-Soo;Jang, Jeong-Hoon;Kim, Na-Mi;Lee, Jong-Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.434-438
    • /
    • 2009
  • For the development of a new antidementia functional food or alternative drug using agricultural products, Job's tears (Coix lachrymajobi L.), which shows high acetylcholinesterase (AChE) inhibitory activity (55.1%) was selected and the extraction conditions of AChE inhibitor were optimized. AChE inhibitor of Job's tears was maximally extracted when it was treated with 60% methanol at $40^{\circ}C$ for 6 h. The AChE inhibitor of the methanol extracts was partially purified by systematic solvent extraction, thin layer chromatography, silica gel chromatography and reverse-phase HPLC and the partial purified AChE inhibitor with inhibitory activity ($IC_{50}$) of $0.608\;{\mu}g$ was obtained. The partial purified AChE inhibitor was soluble in methanol and hexane, and insoluble in water. Its maximum absorption spectra was 230 nm and also it was stable in the range of $30^{\circ}C$ and $70^{\circ}C$ and pH 4.0-8.0 for 1 h.

Production of the Acetylcholinesterase Inhibitor from Yarrowia lipolytica S-3

  • Lee, Dae-Hyung;Lee, Ji-Su;Yi, Sung-Hun;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.36 no.2
    • /
    • pp.102-105
    • /
    • 2008
  • The acetylcholinesterase (AChE) inhibitor of Yarrowia lipolytica S-3 was maximally produced when it was incubated at $30^{\circ}C$ for 36 h in an optimal medium containing 1% yeast extract, 2% peptone and 2% glucose, with an initial pH 6.0. The final AChE inhibitory activity under these conditions was an $IC_{50}$ value of 64mg/ml. After partial purification of the AChE inhibitor by means of systematic solvent extraction, the final $IC_{50}$ value of the partially purified AChE inhibitor was 0.75 mg/ml. We prepared a test product by using the partially purified AChE inhibitor and then determined its stability for the development of a new antidementia commercial product. The test product was stable at room temperature for 15 weeks.

Isolation, Identification and Characterization of a Antidementia Acetylcholinesterase Inhibitor-Producing $Yarrowia$ $lipolytica$ S-3

  • Kang, Min-Gu;Yoon, Min-Ho;Choi, Young-Jun;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.42-46
    • /
    • 2012
  • This report describes the isolation and identification of a potent acetylcholinesterase (AChE) inhibitor-producing yeasts. Of 731 species of yeast strain, the S-3 strain was selected as a potent producer of AChE inhibitor. The selected S-3 strain was investigated for its microbiological characteristics. The S-3 strain was found to be short-oval yeast that did not form an ascospore. The strain formed a pseudomycelium and grew in yeast malt medium containing 50% glucose and 10% ethanol. Finally, the S-3 strain was identified by its physiological characteristics and 26S ribosomal DNA sequences as $Yarrowia$ $lipolytica$ S-3.

Inhibitory Effect of an Ethanol Extract Mixture of Vitis amurensis, Aralia cordata, and Glycyrrhizae radix on Amyloid β Protein (25-35)-Induced Neurotoxicity (머루전초, 독활전초, 감초 혼합추출물의 Amyloid β Protein (25-35) 유발 신경 독성에 대한 억제효과)

  • Jang, Ji Yeon;Seong, Yeon Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.2
    • /
    • pp.105-112
    • /
    • 2014
  • The present study investigated an ethanol extract (SSB) of a mixture of three medicinal plants of Vitis amurensis, Aralia cordata, and Glycyrrhizae radix for possible neuroprotective effects on neurotoxicity induced by Amyloid ${\beta}$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons and antidementia activity in mice. Exposure of cultured cortical neurons to $15{\mu}M$ $A{\beta}$ (25-35) for 36 h induced neuronal apoptotic death. At $1-30{\mu}g/m{\ell}$, SSB inhibited neuronal death, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) induced by $A{\beta}$ (25-35) in cultured cortical neurons. Memory impairment and increase of acetylcholinesterase activity induced by intracerebroventricular injection of mice with 16 nmol $A{\beta}$ (25-35) was inhibited by chronic treatment with SSB (25, 50 and 100 mg/kg, p.o., for 8 days). From these results, it is suggested that antidementia effect of SSB is due to its neuroprotective effect against $A{\beta}$ (25-35)-induced neurotoxicity and that SSB may have a therapeutic role in preventing the progression of Alzheimer's disease.

Physicochemical Characteristics of Antidementia Acetylcholinesterase Inhibitor-containing Methanol Extract from Sorghum bicolor and Industrial Application (항치매성 Acetylcholinesterase저해물질을 함유하고 있는 수수 메탄올 추출물의 특성 및 산업적 응용)

  • Song, Jung-Eun;Lee, Jong-Soo
    • The Journal of Natural Sciences
    • /
    • v.19 no.1
    • /
    • pp.45-55
    • /
    • 2008
  • Alzheimer's disease is charaterized by the acetylcholine depletion, amyloid b-protein aggregation and neurofibrillary tangles. The prevention of the breakdown of acetylcholine by acetylcholinesterase (AChE) inhibitor has the best clinically therapeutic efficacy for Alzheimer's disease patients. To develop new antidementia alternative drugs or nutraceuticals, methanol extracts of Sorghum bicolor was screened from various extracts of cereals and legumes as a potent AChE inhibitor-containing extract in previous paper. In this paper, physicochemical properties of the methanol extracts was investigated. The methanol extracts was soluble by water, methanol and DMSO and had 215 nm and 282nm of maximum absorption spectra. It was also stable at 20-$100^{\circ}C$ and pH 2.0-10.0 for 1 hr. Test product was prepared by using methanol extracts from Sorghum bicolor and changes of its quality during storge at $20^{\circ}C$ and $40^{\circ}C$ were investigated. It was very stable for 8 weeks at $40^{\circ}C$.

  • PDF

Ethanol Extract of Three Plants of Curcuma longae Radix, Phellinus linteus, and Scutellariae Radix Inhibits Amyloid $\beta$ Protein (25-35)-Induced Neurotoxicity in Cultured Neurons and Memory Impairment in Mice (Curcuma longae Radix, Phellinus linteus 및 Scutellariae Radix 혼합추출물의 $A{\beta}$ (25-35) 유도 배양신경세포독성 및 마우스기억손상 억제효과)

  • Kim, Joo-Youn;Jeong, Ha-Yeon;Ban, Ju-Yeon;Yoo, Jae-Kuk;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.388-396
    • /
    • 2009
  • The present study investigated an ethanol extract (HS0608) of a mixture of three medicinal plants of Curcuma longae radix, Phellinus linteus, and Scutellariae radix for possible neuroprotective effects on neurotoxicity induced by amyloid $\beta$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons and antidementia activity in mice. Exposure of cultured cortical neurons to $10\;{\mu}M$ $A{\beta}$ (25-35) for 36 h induced neuronal apoptotic death. At $1-50\;{\mu}g/m{\ell}$, HS0608 inhibited neuronal death, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) induced by $A{\beta}$ (25-35) in primary cultures of rat cortical neurons. Memory loss induced by intracerebroventricular injection of ICR mice with 15 nmol $A{\beta}$ (25-35) was inhibited by chronic treatment with HS0608 (25, 50 and 100 mg/kg, p.o. for 7 days) as measured by a passive avoidance test. From these results, we suggest that the antidementia effect of HS0608 is due to its neuroprotective effect against $A{\beta}$ (25-35)-induced neurotoxicity and that HS0608 may have a therapeutic role in preventing the progression of Alzheimer's disease.

Inhibitory Effect of Chaenomeles sinensis Fruit on Amyloid β Protein (25-35)-Induced Neurotoxicity in Cultured Neurons and Memory Impairment in Mice (Amyloid β protein (25-35)-유도 배양신경 세포독성 및 마우스기억손상에 대한 목과의 억제효과)

  • Jung, Myung-Hwan;Song, Kyung-Sik;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • The present study investigated an ethanol extract of Chaenomeles sinensis fruit (CSF) for possible neuroprotective effects on neurotoxicity induced by amyloid ${\beta}$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons and also for antidementia activity in mice. Exposure of cultured cortical neurons to $10{\mu}M\;A{\beta}$ (25-35) for 36 h induced neuronal apoptotic death. At $0.1-10{\mu}g/m{\ell}$, CSF inhibited neuronal death, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) induced by $A{\beta}$ (25-35) in primary cultures of rat cortical neurons. Memory loss induced by intracerebroventricular injection of mice with 15 nmol $A{\beta}$ (25-35) was inhibited by chronic treatment with CSF (10, 25 and 50 mg/kg, p.o. for 7 days) as measured by a passive avoidance test. CSF (50 mg/kg) inhibited the increase of cholinesterase activity in $A{\beta}$ (25-35)-injected mice brain. From these results, we suggest that the antidementia effect of CSF is due to its neuroprotective effect against $A{\beta}$ (25-35)-induced neurotoxicity and that CSF may have a therapeutic role for preventing the progression of Alzheimer's disease.