• Title/Summary/Keyword: Anticancer agent

Search Result 451, Processing Time 0.021 seconds

Effects of Artemisiae Annuae Herba (AAH) on Cell Death of Ovarian Cancer in Vivo and in Vitro Study (개똥쑥이 난소암 세포의 사멸에 미치는 영향)

  • Seo, Kook-Jang;Cho, Seong-Hee;Yang, Seung-Jung;Park, Kyung-Mi
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.31 no.2
    • /
    • pp.18-30
    • /
    • 2018
  • Objective: This study was designed to investigate the anti-cancer effects of AAH on ovarian cancer in vitro and by using allograft model in vivo. Methods: In this experiment, the effects of AAH on proliferation rates, cell morphology, cell death type, cell cycle, caspase activities and p38 mitogen-activated protein kinase (MAPK) pathway were investigated in A2780, human ovarian cell line. Results: AAH inhibited proliferation of A2780 cells in a dose dependent manner. In addition, AAH induced apoptosis but did not affect cell cycle of A2780 cells. AAH also effectively inhibited caspase 3 and caspase 9 activities respectively. In allograft tumor model, AAH reduced tumor volume and expanded life span in a dose dependent manner. Conclusion: It can be inferred that AAH can induce apoptosis in ovarian cancer cells and has possibility as an anticancer agent for ovarian cancer.

Study on the Mechanism of P-glycoprotein Inhibitory Activity of Silymarin in Human Breast Cancer Cell

  • Kwon, Young-Joo;Jung, Ho-Jin;Lee, Hwa-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.5
    • /
    • pp.315-320
    • /
    • 2006
  • Silymarin showed P-glycoprptein(P-gp) inhibitory activity as much as verapamil, a well-known P-gp inhibitor, by decreasing $IC_{50}$ value of daunomycin(DNM)($16.0{\pm}0.7{\mu}M$), increasing the DNM accumulation($224.9{\pm}3.2%$), and decreasing DNM efflux($58.5{\pm}6.7%$), concurrently. In this study, we clarified the mechanism of action of silymarin for P-gp inhibitory function. First, silymarin may bind to the ATP-binding site and thus, prevent ATP hydrolysis. Second, the P-gp inhibitory activity of silymarin is not related to changing the cellular P-gp level. Third, the cytotoxicity of silymarin was increased in the presence of verapamil, reflecting that silymarin is a competent P-gp substrate against verapamil in the P-gp-overexpressed adriamycin-resistant MCF-7 breast cancer(MCF-7/ADR) cells. Conclusively, silymarin had the P-gp inhibitory activity through the action of competent binding to the P-gp substrate-binding site. Therefore, silymarin can be a good candidate for safe and effective MDR reversing agent in clinical chemotherapy by administering concomitantly with anticancer drugs.

Inhibitory effects of isoscopoletin on thrombus formation via regulation of cyclic nucleotides in collagen-induced platelets

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.235-241
    • /
    • 2020
  • An essential component of the hemostatic process during vascular damage is platelet activation. However, many cardiovascular diseases, such as atherosclerosis, thrombosis, and myocardial infarction, can develop due to excessive platelet activation. Isoscopoletin, found primarily in plant roots of the genus Artemisia or Scopolia, has been studied to demonstrate potential pharmacological effects on Alzheimer's disease and anticancer, but its mechanisms and role in relation to thrombus formation and platelet aggregation have not yet been discovered. This research investigated the effect of isoscopoletin on collagen-induced human platelet activation. As a result, isoscopoletin strongly increased cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels in a concentration-dependent manner. In addition, isoscopoletin greatly phosphorylated inositol 1,4,5-triphosphate receptor (IP3R) and vasodilator-stimulated phosphoprotein (VASP), known substrates of cAMP-dependent kinase and cGMP dependent kinase. Phosphorylation of IP3R by isoscopoletin induced Ca2+ inhibition from the dense tubular system Ca2+ channels, and VASP phosphorylation was involved in fibrinogen binding inhibition by inactivating αIIb/β3 in the platelet membrane. Isoscopoletin finally reduced thrombin-induced fibrin clot production and finally reduced thrombus formation. Therefore, this research suggests that isoscopoletin has strong antiplatelet effects and is likely to be helpful for thrombotic diseases involving platelets by acting as a prophylactic and therapeutic agent.

Cancer-Specific Induction of Adenoviral E1A Expression by Group I Intron-Based Trans-Splicing Ribozyme

  • Won, You-Sub;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.431-435
    • /
    • 2012
  • In this study, we describe a novel approach to achieve replicative selectivity of conditionally replicative adenovirus that is based upon trans-splicing ribozyme-mediated replacement of cancer-specific RNAs. We developed a specific ribozyme that can reprogram human telomerase reverse transcriptase (hTERT) RNA to induce adenoviral E1A gene expression selectively in cancer cells that express the RNA. Western blot analysis showed that the ribozyme highly selectively triggered E1A expression in hTERT-expressing cancer cells. RT-PCR and sequencing analysis indicated that the ribozyme-mediated E1A induction was caused via a high fidelity trans-splicing reaction with the targeted residue in the hTERT-expressing cells. Moreover, reporter activity under the control of an E1A-dependent E3 promoter was highly transactivated in hTERT-expressing cancer cells. Therefore, adenovirus containing the hTERT RNA-targeting trans-splicing ribozyme would be a promising anticancer agent through selective replication in cancer cells and thus specific destruction of the infected cells.

Selective Cytotoxicity Platinum (II) Complex Containing Carrier Ligand of cis-1,2-Diaminocyclohexane (Cis-Diaminocyclohexan을 배위자로 하는 배금(II)착체의 선택적 세포독성)

  • 노영수;정세영;정지창
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.3_4
    • /
    • pp.87-94
    • /
    • 1998
  • The use of cisplatin is limited by severe side effects such as renal toxicity. Our platinum-base drug discovery is aimed at developing drugs capable of diminishing toxicity and improving antitumor activity. We synthesized new Pt (II) complex analogue [Pt (cis-DACH)(DPPP)]. 2NO$_3$ (PC) containing cis-1,2-diaminocyclohexane as a carrier ligand and 1,3-bis(diphenylphosphino) propane as a leaving group. Furthermore, nitrate was added to improved the solubility. In this study, its structure was determined and its antitumor activity against SKOV-3 and NIH-OVCAR-3 human ovarian adenocarcinoma, and in vitro cytotoxicity was determined against primary cultured rabbit kidney proximal tubular and renal cortical cells of human kidney using colorimetric MTT assay. PC demonstrated acceptable antitumor activity against SKOV-3 and NIH-OVCAR-3 human ovarian adenocarcinoma and significant activity as compared with that of cisplatin. The toxicity of PC was found quite less than that of cisplatin using MTT and $^3$H-thymidine uptake tests in rabbit proximal tubular cells and human kidney cortical cells. PC was used for human cortical tissue in 7 weeks hitoculture by the glucose-consumption tests. We determined that the new platinum drug has lower nephrotoxicity than cisplatin. Based on these results, this novel platinum (II) complex compound (PC) represent a valuable lead in the development of a new anticancer chemotherapeutic agent capable of improving antitumor activity and low nephrotoxicity.

  • PDF

Synthesis and Biological Evaluation of Phenoxy-N-phenylacetamide Derivatives as Novel P-glycoprotein Inhibitors

  • Lee, Kyeong;Roh, Sang-Hee;Xia, Yan;Kang, Keon-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3666-3674
    • /
    • 2011
  • Overexpression of P-glycoprotein (Pgp) is associated with multidrug resistance (MDR) of tumor cells to a number of chemotherapeutic drugs. Pgp inhibitors have been shown to effectively reverse Pgp-mediated MDR. We prepared a series of phenoxy-N-phenylacetamide derivatives and tested for their ability to inhibit Pgp as potential MDR reversing agents, using a Pgp over-expressing MCF-7/ADR cell line. Some of the synthesized compounds exhibited moderate to potent reversal activity. Of note, compound 4o showed a 3.0-fold increased inhibition compared with verapamil, a well-known Pgp inhibitor. In addition, co-treatment of the representative compound 4o and a substrate anticancer agent doxorubicin resulted in a remarkable increase in doxorubicin's antitumor effect and inhibition of DNA synthesis in the MCF-7/ADR cell line. Taken together, these findings suggest that compound 4o could be a useful lead for development of a novel Pgp inhibitor for treatment of MDR.

Effect of DW282 on the Induction of Methemoglobinemia, Hypoglycemia or WBC Count and Hematological Changes

  • Moon, Eun-Yi;Hwang, Hyun-Sook;Choi, Chung-Ha;Jung, Sang-Hun;Yoon, Sung-June
    • Archives of Pharmacal Research
    • /
    • v.22 no.6
    • /
    • pp.565-570
    • /
    • 1999
  • DW2282,(S)-(+)-4-phenyl-1-[1-(4-aminobenzoyl)-indoline-5-sulfonyl]-4,5-dihydro-2-imidazolone hydrochloride, is a new anticancer agent which is thought to exhibit a characteristic mechanism of action in the inhibition of tumor growth. In this study, we estimated the toxicities of DW2282 in mice. When mice were orally dosed for five consecutive days at the dosages of 50, 100 and 150 mg/kg, DW2282 did not induced methemoglobinemia and hypoglycemia at any of these doses. However, increased ALT and AST values were observed in the 150 mg/kg dosing group, and white blood cells (WBC) were significantly decreased at all doses. However, the changes in WBC count, ALT and AST immediately reversed after the cessation of drug administration. In addition, we found that DW2282 did not cause an increase in hemolysis in human blood. Taken together, these data suggested that DW2282 may have a relatively low level of toxicity, and that there may be a quick recovery from any toxicity it dose produce.

  • PDF

Antitumor Activity of the Novel Human Cytokine AIMP1 in an in vivo Tumor Model

  • Lee, Yeon-Sook;Han, Jung Min;Kang, Taehee;Park, Young In;Kim, Hwan Mook;Kim, Sunghoon
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.213-217
    • /
    • 2006
  • Although AIMP1 (previously known as p43) is one of three auxiliary proteins bound to a macromolecular aminoacyl tRNA complex, it is also secreted as a cytokine controlling both angiogenesis and immune responses. Here we show that systemically administered purified recombinant human AIMP1 had anti-tumor activity in mouse xenograft models. In Meth A-bearing Balb/c mice, tumor volume increased about 28 fold in the vehicle treatment group, while an increase of about 16.7 fold was observed in the AIMP1-treated group. We also evaluated the anti-tumor activity of AIMP1 in combination with a sub-clinical dose of the cytotoxic anti-tumor drug, paclitaxel. The growth of NUGC-3 human stomach cancer cells was suppressed by 84% and 94% by the combinations of 5 mg/kg paclitaxel + 25 mg/kg AIMP1 (p = 0.03), and 5 mg/kg paclitaxel + 50 mg/kg AIMP1 (p = 0.02), respectively, while 5 mg/kg paclitaxel alone suppressed growth by only 54% (p = 0.02). A similar cooperative effect of AIMP1 and paclitaxel was observed in a lung cancer xenograft model. These results suggest that AIMP1 may be useful as a novel anti-tumor agent.

Decreasing Particle Size of Paclitaxel Using Polymer in Fractional Precipitation Process (고분자물질을 이용한 분별침전 공정에서 파클리탁셀의 입자크기 감소)

  • Kim, Min Jae;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.278-283
    • /
    • 2016
  • In this study, we have for the first time applied fractional precipitation with hydrophilic polymer in order to decrease the particle size of the anticancer agent paclitaxel from plant cell cultures. When compared with the case where no hydrophilic polymer was employed, the addition of hydrophilic polymer in fractional precipitation resulted in a decrease in the size of the paclitaxel precipitate. Among the polymers used, HPMC 2910 was the most effective for inhibition of precipitate growth. A polymer concentration of 0.2% (w/v) obtained the smallest particle size. The particle size was reduced by ~35% compared to control. In addition, the precipitate size was inversely correlated with the absolute value of the zeta potential.

Isolation and Characterization of Antitumor Agents from Dictamnus albus

  • Kim, Se-Won;Yeo, Woon-Hyung;Ko, Young-Su;Kim, Si-Kwan
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.4
    • /
    • pp.209-214
    • /
    • 1997
  • This study was carried out to find new antitumor agents from plant resource. Three cytotoxic agents were isolated from the root of Dictamnus albus by hexane extraction, silica gel column chromatography and HPLC. They were identified to be dictamnine $(C_{12}H_9NO_2)$, preskimmianine $(C_{17}H_{21}NO_4)$ and fraxinellone $(C_{14}H_{16}O_3)$ on the basis of spectroscopic evidences. In this study, it was newly found that these compounds possess a cytotoxic activity against lung lymphoma L1210 cell line. Among them. Preskimmianine was the most potent against the lymphoma L1210 with a $IC_{50}$ of $3.125\;{\mu}g/ml\;(10.3\;{\mu}M)$. Toxicity of preskimmianine against normal Iymphocyte was observed at the concentration of $50\;{\mu}g/ml\;(165\;{mu}M)$. These results support the pharmacological role of D. albus, a herb known as Paeksun in Korea and used as an anticancer agent in folk medicine.

  • PDF