DOI QR코드

DOI QR Code

Study on the Mechanism of P-glycoprotein Inhibitory Activity of Silymarin in Human Breast Cancer Cell

  • Published : 2006.10.21

Abstract

Silymarin showed P-glycoprptein(P-gp) inhibitory activity as much as verapamil, a well-known P-gp inhibitor, by decreasing $IC_{50}$ value of daunomycin(DNM)($16.0{\pm}0.7{\mu}M$), increasing the DNM accumulation($224.9{\pm}3.2%$), and decreasing DNM efflux($58.5{\pm}6.7%$), concurrently. In this study, we clarified the mechanism of action of silymarin for P-gp inhibitory function. First, silymarin may bind to the ATP-binding site and thus, prevent ATP hydrolysis. Second, the P-gp inhibitory activity of silymarin is not related to changing the cellular P-gp level. Third, the cytotoxicity of silymarin was increased in the presence of verapamil, reflecting that silymarin is a competent P-gp substrate against verapamil in the P-gp-overexpressed adriamycin-resistant MCF-7 breast cancer(MCF-7/ADR) cells. Conclusively, silymarin had the P-gp inhibitory activity through the action of competent binding to the P-gp substrate-binding site. Therefore, silymarin can be a good candidate for safe and effective MDR reversing agent in clinical chemotherapy by administering concomitantly with anticancer drugs.

Keywords

References

  1. L. W. Fu, Y. M. Zhang, Y. J. Liang, X. P. Yang, and Q. C. Pan, The multidrug resistance of tumour cells was reversed by tetrandrine in vitro and in xenografts derived from human breast adenocarcinoma MCF-7/adr cells. Eur. J. Cancer, 38, 418-426 (2002) https://doi.org/10.1016/S0959-8049(01)00356-2
  2. O. Fardel, V. Lecureur, and A. Guillouzo, The P-glycoprotein multidrug transporter, Gen. Pharmacol., 27, 1283-1291 (1996) https://doi.org/10.1016/S0306-3623(96)00081-X
  3. S. Labialle, L. Gayet, E. Marthinet, D. Rigal, and L. G. Baggetto, Transcriptional regulators of the human multidrug resistance 1 gene: recent views. Biochem. Pharmacol., 64, 943-948 (2002) https://doi.org/10.1016/S0006-2952(02)01156-5
  4. A. F. Castro and G. A. Altenberg, Inhibition of drug transport by genistein in multidrug-resistant cells expressing P-glycoprotein, Biochem. Pharmacol., 53, 89-93 (1997) https://doi.org/10.1016/S0006-2952(96)00657-0
  5. S. Y. Chung, M. K. Sung, N. H. Kim, J. O. Jang, E. J. Go, and H. J. Lee, Inhibition of P-glycoprotein by natural products in human breast cancer cells, Arch. Pharm. Res., 28, 823-828 (2005) https://doi.org/10.1007/BF02977349
  6. S. V. Ambudkar, S. Dey, C. A. Hrycyna, M. Ramachandra, I. Pastan, and M. M. Gottesman, Biochemical, cellular, and pharmacological aspects of the multidrug transporter, Annu. Rev. Pharmacol. Toxicol., 39, 361-398 (1999) https://doi.org/10.1146/annurev.pharmtox.39.1.361
  7. S. Anuchapreeda, P. Leechanachai, M. M. Smith, S. V. Ambudkar and P. N. Limtrakul, Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells, Biochem. Pharmacol., 64, 573-582 (2002) https://doi.org/10.1016/S0006-2952(02)01224-8
  8. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, and M. R. Boyd, New colorimetric cytotoxicity assay for anticancer-drug screening, J. Natl. Cancer. Institute, 82, 1107-1112 (1990) https://doi.org/10.1093/jnci/82.13.1107
  9. H. R. Kim, S. Y. Chung, Y. H. Jeong, E. J. Go, A.-R. Han, N. H. Kim, M. K. Sung, G. Song, J. O. Jang, J.-W. Nam, H. J. Lee, and E.-K. Seo, P-glycoprotein inhibitory activity of Indonesian medicinal plants in human breast cancer cells, Nat. Prod. Sci., 10, 268-271 (2004)
  10. P. K. Smith, R. I. Krohn, G.. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk, Measurement of protein using bicinchoninic acid. Anal. Biochem., 150, 76-85 (1985) https://doi.org/10.1016/0003-2697(85)90442-7
  11. R. L. Juliano and I. Pastan, A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants, Biochim. Biophys. Acta, 455, 152-162 (1976) https://doi.org/10.1016/0005-2736(76)90160-7
  12. N. Kartner, J. R. Riordan, and V. Ling, Cell surface P-glycoprotein associated with multidrug resistance in mam- malian cell lines, Science, 221, 1285-1288 (1983) https://doi.org/10.1126/science.6137059
  13. M. Raderer and W. Scheitharuer, Clinical trials of agents that reverse multidrug resistance, Cancer, 72, 3553-3563 (1993) https://doi.org/10.1002/1097-0142(19931215)72:12<3553::AID-CNCR2820721203>3.0.CO;2-B
  14. A. Boumendjel, A. Di Pietro, C. Dumontet, and D. Baarron, Recent advances in the discovery of flavonoids and analogs with high-affinity binding to P-glycoprotein responsible for cancer cell multidrug resistance. Med. Res. Rev., 22, 512-529 (2002) https://doi.org/10.1002/med.10015
  15. G. Conseil, H. Baubichon-Cortay, G. Dayan, J. M. Jault, G. Comte, D. Barron, and A. di Pietro, Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid- binding sites on mouse P-glycoprotein. Proc. Natl. Acad. Sci. USA, 95, 9831-9836 (1998)
  16. A. E. Senior, M. K. al-Shawi, and I. L. Urbatsch, The catalytic cycle of P-glycoprotein. FEBS Lett., 377, 285-289 (1995) https://doi.org/10.1016/0014-5793(95)01345-8
  17. Z. E. Sauna, M. M. Smith, M. Muller, K. M. Kerr, and S. V. Ambudkar, The mechanism of action of multidrug-resistance-linked P-glycoprotein. J. Bioenerg. Biomembr., 33, 481-491 (2001) https://doi.org/10.1023/A:1012875105006
  18. L. Urbatsch Ina, and B. Sankaran, P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site. J. Bio. Chem., 270, 19383-19390 (1995) https://doi.org/10.1074/jbc.270.33.19383