• Title/Summary/Keyword: Antibody-drug conjugates

Search Result 10, Processing Time 0.023 seconds

Strategies and Advancement in Antibody-Drug Conjugate Optimization for Targeted Cancer Therapeutics

  • Kim, Eunhee G.;Kim, Kristine M.
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.493-509
    • /
    • 2015
  • Antibody-drug conjugates utilize the antibody as a delivery vehicle for highly potent cytotoxic molecules with specificity for tumor-associated antigens for cancer therapy. Critical parameters that govern successful antibody-drug conjugate development for clinical use include the selection of the tumor target antigen, the antibody against the target, the cytotoxic molecule, the linker bridging the cytotoxic molecule and the antibody, and the conjugation chemistry used for the attachment of the cytotoxic molecule to the antibody. Advancements in these core antibody-drug conjugate technology are reflected by recent approval of Adectris$^{(R)}$(anti-CD30-drug conjugate) and Kadcyla$^{(R)}$(anti-HER2 drug conjugate). The potential approval of an anti-CD22 conjugate and promising new clinical data for anti-CD19 and anti-CD33 conjugates are additional advancements. Enrichment of antibody-drug conjugates with newly developed potent cytotoxic molecules and linkers are also in the pipeline for various tumor targets. However, the complexity of antibody-drug conjugate components, conjugation methods, and off-target toxicities still pose challenges for the strategic design of antibody-drug conjugates to achieve their fullest therapeutic potential. This review will discuss the emergence of clinical antibody-drug conjugates, current trends in optimization strategies, and recent study results for antibody-drug conjugates that have incorporated the latest optimization strategies. Future challenges and perspectives toward making antibody-drug conjugates more amendable for broader disease indications are also discussed.

Market Trend and Current Status of the Research and Development of Antibody-Drug Conjugates

  • Kwon, Sun-Il
    • Biomedical Science Letters
    • /
    • v.27 no.3
    • /
    • pp.121-133
    • /
    • 2021
  • Antibody-drug conjugates (ADCs) are drawing much interest due to its great potential to be one of the important options in cancer treatments. ADCs are acting like a magic bullet which delivers cytotoxic drugs specifically to cancerous cells throughout the body, thus attacks these cells, while not harming healthy cells. ADCs are complex molecules that are composed of an antibody having targeting capability and linked-payload or cytotoxic drug killing cancerous cells. The key factors of the success in the development of ADC are selection of appropriate antibody, cytotoxic payload and linker for conjugation. Recently there was considerable progress in ADCs development, and a large number of ADCs gained US FDA approval. About 80 new ADCs are under active clinical studies. In this review we present a brief introduction of the US-FDA approved ADCs and global situation in the clinical studies of ADC pipelines. We address an overview on each component of an ADC design such as target antigens, payloads, linkers, conjugation methods, drug antibody ratio. In addition, we discuss on the trend of ADC market where global big pharmas and domestic biopharmaceutical companies are competing to develop safer and more effective ADCs.

Recent progress of enzyme cleavable linker in antibody-drug conjugates: sulfatase and phosphatase

  • Sushil K. Dwivedi;Abhinav Bhise;Rajkumar Subramani;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • Recently, antibody-drug conjugates (ADCs) are used to deliver efficient cytotoxic payloads selectively in cancer cells. In the designing of an ADC, the antibody is connected to a toxic payload via a covalent linker, which helps to solubilizes the typical hydrophobic payload as well as stabilizes the linkage over circulation. The development of the linkers for the antibody drug conjugate is still in demand. Initially, the acid, disulfide, and cathepsin-sensitive ADCs attracted considerable attention for the delivery of a potent cytotoxic payload but suffer from instability in human and mouse plasma with a short half-life. In addition, It also suffer from a solubility issue that induces aggregation, which is the major problem in their development. ADCs associated with sulfatase and phosphatase cleavable linker are highly soluble due to the anionic nature of sulfate and phosphate groups. The ADCs also showed high stability in human and mouse plasma. Therefore, to overcome these limitations, sulfatase and phosphatase cleavable linkers were developed. This review focuses on the recently reported advantages of sulfatase and phosphatase cleavable linkers for ADCs.

Simple measurement the chelator number of antibody conjugates by MALDI-TOF MS

  • Shin, Eunbi;Lee, Ji Woong;Lee, Kyo Chul;Shim, Jae Hoon;Cha, Sangwon;Kim, Jung Young
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.54-58
    • /
    • 2017
  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF MS) is one of the powerful methods that enable analysis of small molecules as well as large molecules up to about 500,000 Da without severe fragmentation. MALDI-TOF MS, thus, has been a very useful an analytical tool for the confirmation of synthetic molecules, probing PTMs, and identifying structures of a given protein. In recent nuclear medicine, MALDI-TOF MS liner ion mode helps researcher calculate the average number of chelator(or linkage) per an antibody conjugate, such as DOTA-(or DFO-) trastuzumab for labeling a medical radioisotope. This simple technique can be utilized to improve the labeling method and control the quality at the development of antibody-based radiopharmaceuticals, which is very effected to diagnosis and therapy for in vivo tumor cells, with radioisotopes like $^{89}Zr$, $^{64}Cu$, and 177Lu. To minimize the error, MALDI-TOF MS measurement is repeatedly performed for each sample in this study, and external calibration is carried out after data collection.

Role of polyethylene glycol (PEG) linkers: trends in antibody conjugation and their pharmacokinetics

  • Kondapa Naidu Bobba;Abhinav Bhise;Subramani Rajkumar;Woonghee Lee;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.155-164
    • /
    • 2020
  • Polyethylene glycol (PEG) has been the most commonly used polymer for the past few decades in the field of biomedical applications due to its gold standard stealth effect. PEGylation of antibody-drug conjugates, liposomes, peptides, nanoparticles, and proteins is done to improve their pharmaceutical efficacy and pharmacokinetic properties. PEGylation of antibodies with various PEG linkers improves targeting ability by increasing the blood circulation time and thus enhances the biodistribution profiles. It also assists in minimizing the immediate capture by the reticuloendothelial system. In this review, we summarize the effect of PEG linkers in an antibody conjugation and their pharmacokinetics in the field of biomedical imaging.

Recent Progress in Drug Delivery Systems for Anticancer Agents

  • Kim, Chong-Kook;Lim, Soo-Jeong
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.229-239
    • /
    • 2002
  • Recent progress in understanding the molecular basis of cancer brought out new materials such as oligonucleotides, genes, peptides and proteins as a source of new anticancer agents. Due to their macromolecular properties, however, new strategies of delivery for them are required to achieve their full therapeutic efficacy in clinical setting. Development of improved dosage forms of currently marketed anticancer drugs can also enhance their therapeutic values. Currently developed delivery systems for anticancer agents include colloidal systems (liposomes, emulsions, nanoparticles and micelles), polymer implants and polymer conjugates. These delivery systems have been able to provide enhanced therapeutic activity and reduced toxicity of anticancer agents mainly by altering their pharmacokinetics and biodistribution. Furthermore, the identification of cell-specific receptor/antigens on cancer cells have brought the development of ligand- or antibody-bearing delivery systems which can be targeted to cancer cells by specific binding to receptors or antigens. They have exhibited specific and selective delivery of anticancer agents to cancer. As a consequence of extensive research, clinical development of anticancer agents utilizing various delivery systems is undergoing worldwide. New technologies and multidisciplinary expertise to develop advanced drug delivery systems, applicable to a wide range of anticancer agents, may eventually lead to an effective cancer therapy in the future.

Development of Bioluminescence Immunoassay Using Photoprotein, Aequorin and Site-directed Immobilization

  • Shim, Yu-Nee;Rhee, In-sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.70-74
    • /
    • 2003
  • The heterogeneous bioluminescence immunoassay for digoxin was developed using photoprotein, native aequorin as a label and the site-directed immobilization technique based on avidin/biotin interaction. Aequorin is a bioluminescence protein, originally isolated from the jellyfish Aequoria Victoria and an attractive label in analytical applications because of sensitive detection due to virtually no background bioluminescent signal. Digoxin is a cardioactive drug, and its therapeutic level in serum is at low concentration with very narrow therapeutic index. The aequorin-digoxigenin conjugates were synthesized by the N-hydroxysuccinimide ester method and characterized in terms of bioluminescent residual activity. The resulting dose-response curve shows that the detection limit is $1.0\;{\times}\;10^{-10}\;M$ and a dynamic range is three orders of magnitude, which was obtained by $1.0\;{times}\;10^{-10}\;M$ conjugate and 0.9 μg/mL anti-digoxin antibody. Three structurally similar molecules to digoxin were examined for their cross-reactivity. None of these three compounds showed any crossreactivity with digoxin antibody employed in this study. Standard amounts of digoxin corresponding to the therapeutic range were spiked into the each serum solution. Study of the serum matrix effect indicated that correlation coefficient shows good agreement between luminescence light intensity between in buffer and in serum.

Determination of Mertansine in Rat Plasma Using Liquid Chromatography-Tandem Mass Spectrometry and Pharmacokinetics of Mertansine in Rats

  • Choi, Won-Gu;Kim, Ju-Hyun;Jang, Hyun-Joon;Lee, Hye Suk
    • Mass Spectrometry Letters
    • /
    • v.11 no.3
    • /
    • pp.59-64
    • /
    • 2020
  • Mertansine, a thiol-containing maytansinoid, is a tubulin inhibitor used as the cytotoxic component of antibody-drug conjugates for the treatment of cancer. Liquid chromatography-tandem mass spectrometry was described for the determination of mertansine in rat plasma. 50-μL rat plasma sample was pretreated with 25 μL of 20 mM tris-(2-carboxyethyl)-phosphine, a reducing reagent, and further vortex-mixing with 50 μL of 50 mM N-ethylmaleimide for 3 min resulted in the alkylation of thiol group in mertansine. Alkylation reaction was stopped by addition of 100 μL of sildenafil in acetonitrile (200 ng/mL), and following centrifugation, aliquot of the supernatant was analyzed by the selected reaction monitoring mode. The standard curve was linear over the range of 1-1000 ng/mL in rat plasma with the lower limit of quantification level at 1 ng/mL. The intra- and inter-day accuracies and coefficient variations for mertansine at four quality control concentrations were 96.7-113.1% and 2.6-15.0%, respectively. Using this method, the pharmacokinetics of mertansine were evaluated after intravenous administration of mertansine at doses of 0.2, 0.5, and 1 mg/kg to female Sprague Dawley rats.

Emerging Targets for Systemic Treatment of Gastric Cancer: HER2 and Beyond

  • In-Ho Kim
    • Journal of Gastric Cancer
    • /
    • v.24 no.1
    • /
    • pp.29-56
    • /
    • 2024
  • In recent years, remarkable progress has been made in the molecular profiling of gastric cancer. This progress has led to the development of various molecular classifications to uncover subtype-specific dependencies that can be targeted for therapeutic interventions. Human epidermal growth factor receptor 2 (HER2) is a crucial biomarker for advanced gastric cancer. The recent promising results of novel approaches, including combination therapies or newer potent agents such as antibody-drug conjugates, have once again brought attention to anti-HER2 targeted treatments. In HER2-negative diseases, the combination of cytotoxic chemotherapy and programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors has become the established standard of care in first-line settings. In the context of gastric cancer, potential biomarkers such as PD-L1 expression, Epstein-Barr virus, microsatellite instability, and tumor mutational burden are being considered for immunotherapy. Recently, promising results have been reported in studies on anti-Claudin18.2 and fibroblast growth factor receptor 2 treatments. Currently, many ongoing trials are aimed at identifying potential targets using novel approaches. Further investigations will be conducted to enhance the progress of these therapies, addressing challenges such as primary and acquired resistance, tumor heterogeneity, and clonal evolution. We believe that these efforts will improve patient prognoses. Herein, we discuss the current evidence of potential targets for systemic treatment, clinical considerations, and future perspectives.