Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.116

Strategies and Advancement in Antibody-Drug Conjugate Optimization for Targeted Cancer Therapeutics  

Kim, Eunhee G. (Department of Systems Immunology, College of Biomedical Science, Kangwon National University)
Kim, Kristine M. (Department of Systems Immunology, College of Biomedical Science, Kangwon National University)
Publication Information
Biomolecules & Therapeutics / v.23, no.6, 2015 , pp. 493-509 More about this Journal
Abstract
Antibody-drug conjugates utilize the antibody as a delivery vehicle for highly potent cytotoxic molecules with specificity for tumor-associated antigens for cancer therapy. Critical parameters that govern successful antibody-drug conjugate development for clinical use include the selection of the tumor target antigen, the antibody against the target, the cytotoxic molecule, the linker bridging the cytotoxic molecule and the antibody, and the conjugation chemistry used for the attachment of the cytotoxic molecule to the antibody. Advancements in these core antibody-drug conjugate technology are reflected by recent approval of Adectris$^{(R)}$(anti-CD30-drug conjugate) and Kadcyla$^{(R)}$(anti-HER2 drug conjugate). The potential approval of an anti-CD22 conjugate and promising new clinical data for anti-CD19 and anti-CD33 conjugates are additional advancements. Enrichment of antibody-drug conjugates with newly developed potent cytotoxic molecules and linkers are also in the pipeline for various tumor targets. However, the complexity of antibody-drug conjugate components, conjugation methods, and off-target toxicities still pose challenges for the strategic design of antibody-drug conjugates to achieve their fullest therapeutic potential. This review will discuss the emergence of clinical antibody-drug conjugates, current trends in optimization strategies, and recent study results for antibody-drug conjugates that have incorporated the latest optimization strategies. Future challenges and perspectives toward making antibody-drug conjugates more amendable for broader disease indications are also discussed.
Keywords
Antibodies; Antibody-drug conjugates; Immunotherapy; Targeted therapy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 van der Neut Kolfschoten, M., Schuurman, J., Losen, M., Bleeker, W. K., Martinez-Martinez, P., Vermeulen, E., den Bleker, T. H., Wiegman, L., Vink, T., Aarden, L. A., De Baets, M. H., van de Winkel, J. G., Aalberse, R. C. and Parren, P. W. (2007) Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317, 1554-1557.   DOI
2 van Der Velden, V. H., te Marvelde, J. G., Hoogeveen, P. G., Bernstein, I. D., Houtsmuller, A. B., Berger, M. S. and van Dongen, J. J. (2001) Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood 97, 3197-3204.   DOI
3 Wang, L., Zhang, Z., Brock, A. and Schultz, P. G. (2003) Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl. Acad Sci. U.S.A. 100, 56-61.   DOI
4 Wong, W. M. (1999) Drug update: trastuzumab: anti-HER2 antibody for treatment of metastatic breast cancer. Cancer Pract. 7, 48-50.   DOI
5 Yang, H. M. and Reisfeld, R. A. (1988) Doxorubicin conjugated with a monoclonal antibody directed to a human melanoma-associated proteoglycan suppresses the growth of established tumor xenografts in nude mice. Proc. Natl. Acad Sci. U.S.A. 85, 1189-1193.   DOI
6 Younes, A., Gopal, A. K., Smith, S. E., Ansell, S. M., Rosenblatt, J. D., Savage, K. J., Ramchandren, R., Bartlett, N. L., Cheson, B. D., de Vos, S., Forero-Torres, A., Moskowitz, C. H., Connors, J. M., Engert, A., Larsen, E. K., Kennedy, D. A., Sievers, E. L. and Chen, R. (2012) Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma. J. Clin. Oncol. 30, 2183-2189.   DOI
7 Young, T. S., Ahmad, I., Yin, J. A. and Schultz, P. G. (2010) An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 395, 361-374.   DOI
8 Advani, A., Coiffier, B., Czuczman, M. S., Dreyling, M., Foran, J., Gine, E., Gisselbrecht, C., Ketterer, N., Nasta, S., Rohatiner, A., Schmidt-Wolf, I. G., Schuler, M., Sierra, J., Smith, M. R., Verhoef, G., Winter, J. N., Boni, J., Vandendries, E., Shapiro, M. and Fayad, L. (2010) Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin's lymphoma: results of a phase I study. J. Clin. Oncol. 28, 2085-2093.   DOI
9 Albin, N., Massaad, L., Toussaint, C., Mathieu, M. C., Morizet, J., Parise, O., Gouyette, A. and Chabot, G. G. (1993) Main drugmetabolizing enzyme systems in human breast tumors and peritumoral tissues. Cancer Res. 53, 3541-3546.
10 Alley, S. C., Benjamin, D. R., Jeffrey, S. C., Okeley, N. M., Meyer, D. L., Sanderson, R. J. and Senter, P. D. (2008) Contribution of Linker Stability to the Activities of Anticancer Immunoconjugates. Bioconjug. Chem. 19, 759-765.   DOI
11 Ansell, S. M., Horwitz, S. M., Engert, A., Khan, K. D., Lin, T., Strair, R., Keler, T., Graziano, R., Blanset, D., Yellin, M., Fischkoff, S., Assad, A. and Borchmann, P. (2007) Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin's lymphoma and anaplastic large-cell lymphoma. J. Clin. Oncol. 25, 2764-2769.   DOI
12 Axup, J. Y., Bajjuri, K. M., Ritland, M., Hutchins, B. M., Kim, C. H., Kazane, S. A., Halder, R., Forsyth, J. S., Santidrian, A. F., Stafin, K., Lu, Y., Tran, H., Seller, A. J., Biroc, S. L., Szydlik, A., Pinkstaff, J. K., Tian, F., Sinha, S. C., Felding-Habermann, B., Smider, V. V. and Schultz, P. G. (2012) Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl. Acad Sci. U.S. A. 109, 16101-16106.   DOI
13 Bai, R. L., Pettit, G. R. and Hamel, E. (1990) Structure-activity studies with chiral isomers and with segments of the antimitotic marine peptide dolastatin 10. Biochem. Pharmacol. 40, 1859-1864.   DOI
14 Boger, D. L. and Johnson, D. S. (1995) CC-1065 and the duocarmycins: unraveling the keys to a new class of naturally derived DNA alkylating agents. Proc. Natl. Acad Sci. U.S.A. 92, 3642-3649.   DOI
15 Zhao, R. Y., Wilhelm, S. D., Audette, C., Jones, G., Leece, B. A., Lazar, A. C., Goldmacher, V. S., Singh, R., Kovtun, Y., Widdison, W. C., Lambert, J. M. and Chari, R. V. (2011) Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates. J. Med. Chem. 54, 3606-3623.   DOI
16 Beck, A., Senter, P. and Chari, R. (2011) World Antibody Drug Conjugate Summit Europe: February 21-23, 2011; Frankfurt, Germany. MAbs 3, 331-337.   DOI
17 Boeggeman, E., Ramakrishnan, B., Kilgore, C., Khidekel, N., Hsieh-Wilson, L. C., Simpson, J. T. and Qasba, P. K. (2007) Direct identification of nonreducing GlcNAc residues on N-glycans of glycoproteins using a novel chemoenzymatic method. Bioconjug. Chem. 18, 806-814.   DOI
18 Boeggeman, E., Ramakrishnan, B., Pasek, M., Manzoni, M., Puri, A., Loomis, K. H., Waybright, T. J. and Qasba, P. K. (2009) Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug. Chem. 20, 1228-1236.   DOI
19 Boger, D. L. (1993) Design, synthesis, and evaluation of DNA minor groove binding agents. Pure Appl. Chem. 65, 1123-1132.
20 Bross, P. F., Beitz, J., Chen, G., Chen, X. H., Duffy, E., Kieffer, L., Roy, S., Sridhara, R., Rahman, A., Williams, G. and Pazdur, R. (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer. Res. 7, 1490-1496.
21 Carrico, I. S., Carlson, B. L. and Bertozzi, C. R. (2007) Introducing genetically encoded aldehydes into proteins. Nat. Chem. Biol. 3, 321-322.   DOI
22 Cassady, J. M., Chan, K. K., Floss, H. G. and Leistner, E. (2004) Recent developments in the maytansinoid antitumor agents. Chem. Pharm. Bull. (Tokyo) 52, 1-26.   DOI
23 Deutsch, Y. E., Tadmor, T., Podack, E. R. and Rosenblatt, J. D. (2011) CD30: an important new target in hematologic malignancies. Leuk Lymphoma 52, 1641-1654.   DOI
24 Chen, Y., Liu, G., Guo, L., Wang, H., Fu, Y. and Luo, Y. (2015) Enhancement of tumor uptake and therapeutic efficacy of EGFR-targeted antibody cetuximab and antibody-drug conjugates by cholesterol sequestration. Int. J. Cancer 136, 182-194.   DOI
25 Corrie, P. G. (2008) Cytotoxic chemotherapy: clinical aspects. Medicine 36, 24-28.   DOI
26 De Groot, F. M., Beusker, P. H., Scheeren, J. W., De Vos, D., Van Berkom, L. W. A., Busscher, G. F., Seelen, A. E., RKoekkoek, R. and Albrecht, C. (2007). ELONGATED AND MULTIPLE SPACERS IN ACTIVATIBLE PRODRUGS. Patent U.S. 7223837 B2.
27 Dijoseph, J. F., Dougher, M. M., Armellino, D. C., Evans, D. Y. and Damle, N. K. (2007) Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia 21, 2240-2245.   DOI
28 Dornan, D., Bennett, F., Chen, Y., Dennis, M., Eaton, D., Elkins, K., French, D., Go, M. A., Jack, A., Junutula, J. R., Koeppen, H., Lau, J., McBride, J., Rawstron, A., Shi, X., Yu, N., Yu, S. F., Yue, P., Zheng, B., Ebens, A. and Polson, A. G. (2009) Therapeutic potential of an anti-CD79b antibody-drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood 114, 2721-2729.   DOI
29 Doronina, S. O., Mendelsohn, B. A., Bovee, T. D., Cerveny, C. G., Alley, S. C., Meyer, D. L., Oflazoglu, E., Toki, B. E., Sanderson, R. J., Zabinski, R. F., Wahl, A. F. and Senter, P. D. (2006) Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug. Chem. 17, 114-124.   DOI
30 Doronina, S. O., Toki, B. E., Torgov, M. Y., Mendelsohn, B. A., Cerveny, C. G., Chace, D. F., DeBlanc, R. L., Gearing, R. P., Bovee, T. D., Siegall, C. B., Francisco, J. A., Wahl, A. F., Meyer, D. L. and Senter, P. D. (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 21, 778-784.   DOI
31 Eisenbeis, C. F., Caligiuri, M. A. and Byrd, J. C. (2003) Rituximab: converging mechanisms of action in non-Hodgkin's lymphoma? Clin. Cancer Res. 9, 5810-5812.
32 Elias, D. J., Kline, L. E., Robbins, B. A., Johnson, H. C., Jr., Pekny, K., Benz, M., Robb, J. A., Walker, L. E., Kosty, M. and Dillman, R. O. (1994) Monoclonal antibody KS1/4-methotrexate immunoconjugate studies in non-small cell lung carcinoma. Am. J. Respir. Crit. Care Med. 150, 1114-1122.   DOI
33 Ellestad, G. A. (2011) Structural and conformational features relevant to the anti-tumor activity of calicheamicin gamma 1I. Chirality 23, 660-671.   DOI
34 Erickson, H. K., Park, P. U., Widdison, W. C., Kovtun, Y. V., Garrett, L. M., Hoffman, K., Lutz, R. J., Goldmacher, V. S. and Blattler, W. A. (2006) Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 66, 4426-4433.   DOI
35 Forero-Torres, A., Leonard, J. P., Younes, A., Rosenblatt, J. D., Brice, P., Bartlett, N. L., Bosly, A., Pinter-Brown, L., Kennedy, D., Sievers, E. L. and Gopal, A. K. (2009) A Phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br. J. Haematol. 146, 171-179.   DOI
36 Gajria, D. and Chandarlapaty, S. (2011) HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev. Anticancer Ther. 11, 263-275.   DOI
37 Hamann, P. R., Hinman, L. M., Beyer, C. F., Lindh, D., Upeslacis, J., Flowers, D. A. and Bernstein, I. (2002) An anti-CD33 antibodycalicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug. Chem. 13, 40-46.   DOI
38 Gerber, H. P. (2010) Emerging immunotherapies targeting CD30 in Hodgkin's lymphoma. Biochem. Pharmacol. 79, 1544-1552.   DOI
39 Giles, F. J., Kantarjian, H. M., Kornblau, S. M., Thomas, D. A., Garcia-Manero, G., Waddelow, T. A., David, C. L., Phan, A. T., Colburn, D. E., Rashid, A. and Estey, E. H. (2001) Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 92, 406-413.   DOI
40 Hallen, H. E., Luo, H., Scott-Craig, J. S. and Walton, J. D. (2007) Gene family encoding the major toxins of lethal Amanita mushrooms. Proc. Natl. Acad Sci. U.S.A. 104, 19097-19101.   DOI
41 Hamblett, K. J., Senter, P. D., Chace, D. F., Sun, M. M., Lenox, J., Cerveny, C. G., Kissler, K. M., Bernhardt, S. X., Kopcha, A. K., Zabinski, R. F., Meyer, D. L. and Francisco, J. A. (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 10, 7063-7070.   DOI
42 Hofer, T., Skeffington, L. R., Chapman, C. M. and Rader, C. (2009) Molecularly defined antibody conjugation through a selenocysteine interface. Biochemistry 48, 12047-12057.   DOI
43 Hommelgaard, A. M., Lerdrup, M. and van Deurs, B. (2004) Association with membrane protrusions makes ErbB2 an internalizationresistant receptor. Mol. Biol. Cell 15, 1557-1567.   DOI
44 Jeffrey, S. C., Andreyka, J. B., Bernhardt, S. X., Kissler, K. M., Kline, T., Lenox, J. S., Moser, R. F., Nguyen, M. T., Okeley, N. M., Stone, I. J., Zhang, X. and Senter, P. D. (2006) Development and properties of beta-glucuronide linkers for monoclonal antibody-drug conjugates. Bioconjug. Chem. 17, 831-840.   DOI
45 Horn-Lohrens, O., Tiemann, M., Lange, H., Kobarg, J., Hafner, M., Hansen, H., Sterry, W., Parwaresch, R. M. and Lemke, H. (1995) Shedding of the soluble form of CD30 from the Hodgkin-analogous cell line L540 is strongly inhibited by a new CD30-specific antibody (Ki-4). Int. J. Cancer 60, 539-544.   DOI
46 Ingle, G. S., Chan, P., Elliott, J. M., Chang, W. S., Koeppen, H., Stephan, J. P. and Scales, S. J. (2008) High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br. J. Haematol. 140, 46-58.
47 Jain, N., O'Brien, S., Thomas, D. and Kantarjian, H. (2014) Inotuzumab ozogamicin in the treatment of acute lymphoblastic leukemia. Front Biosci (Elite Ed) 6, 40-45.
48 Jeffrey, S. C., Nguyen, M. T., Moser, R. F., Meyer, D. L., Miyamoto, J. B. and Senter, P. D. (2007) Minor groove binder antibody conjugates employing a water soluble ${\beta}$-glucuronide linker. Bioorg. Med. Chem. Lett. 17, 2278-2280.   DOI
49 Jeffrey, S. C., Torgov, M. Y., Andreyka, J. B., Boddington, L., Cerveny, C. G., Denny, W. A., Gordon, K. A., Gustin, D., Haugen, J., Kline, T., Nguyen, M. T. and Senter, P. D. (2005) Design, synthesis, and in vitro evaluation of dipeptide-based antibody minor groove binder conjugates. J. Med. Chem. 48, 1344-1358.   DOI
50 Jeger, S., Zimmermann, K., Blanc, A., Grunberg, J., Honer, M., Hunziker, P., Struthers, H. and Schibli, R. (2010) Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew. Chem. Int. Ed. Engl. 49, 9995-9997.   DOI
51 Kantarjian, H., Thomas, D., Jorgensen, J., Jabbour, E., Kebriaei, P., Rytting, M., York, S., Ravandi, F., Kwari, M., Faderl, S., Rios, M. B., Cortes, J., Fayad, L., Tarnai, R., Wang, S. A., Champlin, R., Advani, A. and O'Brien, S. (2012) Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 13, 403-411.   DOI
52 Junutula, J. R., Bhakta, S., Raab, H., Ervin, K. E., Eigenbrot, C., Vandlen, R., Scheller, R. H. and Lowman, H. B. (2008a) Rapid identification of reactive cysteine residues for site-specific labeling of antibody-Fabs. J. Immunol. Methods 332, 41-52.   DOI
53 Junutula, J. R., Flagella, K. M., Graham, R. A., Parsons, K. L., Ha, E., Raab, H., Bhakta, S., Nguyen, T., Dugger, D. L., Li, G., Mai, E., Lewis Phillips, G. D., Hiraragi, H., Fuji, R. N., Tibbitts, J., Vandlen, R., Spencer, S. D., Scheller, R. H., Polakis, P. and Sliwkowski, M. X. (2010) Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin. Cancer Res. 16, 4769-4778.   DOI
54 Junutula, J. R., Raab, H., Clark, S., Bhakta, S., Leipold, D. D., Weir, S., Chen, Y., Simpson, M., Tsai, S. P., Dennis, M. S., Lu, Y., Meng, Y. G., Ng, C., Yang, J., Lee, C. C., Duenas, E., Gorrell, J., Katta, V., Kim, A., McDorman, K., Flagella, K., Venook, R., Ross, S., Spencer, S. D., Lee Wong, W., Lowman, H. B., Vandlen, R., Sliwkowski, M. X., Scheller, R. H., Polakis, P. and Mallet, W. (2008b) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925-932.   DOI
55 Katz, J., Janik, J. E. and Younes, A. (2011) Brentuximab Vedotin (SGN-35) Clin. Cancer Res. 17, 6428-6436.   DOI
56 Koblinski, J. E., Ahram, M. and Sloane, B. F. (2000) Unraveling the role of proteases in cancer. Clin. Chim. Acta 291, 113-135.   DOI
57 Kellogg, B. A., Garrett, L., Kovtun, Y., Lai, K. C., Leece, B., Miller, M., Payne, G., Steeves, R., Whiteman, K. R., Widdison, W., Xie, H., Singh, R., Chari, R. V. J., Lambert, J. M. and Lutz, R. J. (2011) Disulfide-linked antibody-maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug. Chem. 22, 717-727.   DOI
58 Kim, K. M., McDonagh, C. F., Westendorf, L., Brown, L. L., Sussman, D., Feist, T., Lyon, R., Alley, S. C., Okeley, N. M., Zhang, X., Thompson, M. C., Stone, I., Gerber, H. P. and Carter, P. J. (2008) Anti-CD30 diabody-drug conjugates with potent antitumor activity. Mol. Cancer Ther. 7, 2486-2497.   DOI
59 Kim, Y. S., Park, T., Woo, S., Lee, H., Kim, S., Kwon, H., Oh, K., Chung, Y. and Park, Y. H. (2014) ANTIBODY-ACTIVE AGENT CONJUGATES AND METHODS OF USE. US Patent Application 20140187756 A1.
60 Koppe, M. J., Postema, E. J., Aarts, F., Oyen, W. J., Bleichrodt, R. P. and Boerman, O. C. (2005) Antibody-guided radiation therapy of cancer. Cancer Metastasis Rev. 24, 539-567.   DOI
61 Kung Sutherland, M. S., Walter, R. B., Jeffrey, S. C., Burke, P. J., Yu, C., Kostner, H., Stone, I., Ryan, M. C., Sussman, D., Lyon, R. P., Zeng, W., Harrington, K. H., Klussman, K., Westendorf, L., Meyer, D., Bernstein, I. D., Senter, P. D., Benjamin, D. R., Drachman, J. G. and McEarchern, J. A. (2013) SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood 122, 1455-1463.   DOI
62 Lewis Phillips, G. D., Li, G., Dugger, D. L., Crocker, L. M., Parsons, K. L., Mai, E., Blattler, W. A., Lambert, J. M., Chari, R. V. J., Lutz, R. J., Wong, W. L. T., Jacobson, F. S., Koeppen, H., Schwall, R. H., Kenkare-Mitra, S. R., Spencer, S. D. and Sliwkowski, M. X. (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 68, 9280-9290.   DOI
63 Larson, R. A., Sievers, E. L., Stadtmauer, E. A., Lowenberg, B., Estey, E. H., Dombret, H., Theobald, M., Voliotis, D., Bennett, J. M., Richie, M., Leopold, L. H., Berger, M. S., Sherman, M. L., Loken, M. R., van Dongen, J. J., Bernstein, I. D. and Appelbaum, F. R. (2005) Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 104, 1442-1452.   DOI
64 Lee, M. D., Dunne, T. S., Chang, C. C., Siegel, M. M., Morton, G. O., Ellestad, G. A., McGahren, W. J. and Borders, D. B. (1992) Calicheamicins, a novel family of antitumor antibiotics. 4. Structure elucidation of calicheamicins.beta.1Br, .gamma.1Br, .alpha.2I, .alpha.3I, .beta.1I, .gamma.1I, and .delta.1I. J. Am. Chem. Soc. 114, 985-997.   DOI
65 Leonard, J. P., Coleman, M., Ketas, J. C., Chadburn, A., Furman, R., Schuster, M. W., Feldman, E. J., Ashe, M., Schuster, S. J., Wegener, W. A., Hansen, H. J., Ziccardi, H., Eschenberg, M., Gayko, U., Fields, S. Z., Cesano, A. and Goldenberg, D. M. (2004) Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin's lymphoma: phase I/II clinical trial results. Clin. Cancer Res. 10, 5327-5334.   DOI
66 Lindell, T. J., Weinberg, F., Morris, P. W., Roeder, R. G. and Rutter, W. J. (1970) Specific inhibition of nuclear RNA polymerase II by alphaamanitin. Science 170, 447-449.   DOI
67 McDonagh, C. F., Kim, K. M., Turcott, E., Brown, L. L., Westendorf, L., Feist, T., Sussman, D., Stone, I., Anderson, M., Miyamoto, J., Lyon, R., Alley, S. C., Gerber, H. P. and Carter, P. J. (2008) Engineered anti-CD70 antibody-drug conjugate with increased therapeutic index. Mol. Cancer Ther. 7, 2913-2923.   DOI
68 Liu, W., Brock, A., Chen, S., Chen, S. and Schultz, P. G. (2007) Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat. Methods 4, 239-244.   DOI
69 Maloney, D. G., Liles, T. M., Czerwinski, D. K., Waldichuk, C., Rosenberg, J., Grillo-Lopez, A. and Levy, R. (1994) Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84, 2457-2466.
70 Mason, S. D. and Joyce, J. A. (2011) Proteolytic networks in cancer. Trends Cell Biol. 21, 228-237.   DOI
71 McDonagh, C. F., Turcott, E., Westendorf, L., Webster, J. B., Alley, S. C., Kim, K., Andreyka, J., Stone, I., Hamblett, K. J., Francisco, J. A. and Carter, P. (2006) Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng. Des. Sel. 19, 299-307.   DOI
72 Moldenhauer, G., Salnikov, A. V., Luttgau, S., Herr, I., Anderl, J. and Faulstich, H. (2012) Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J. Natl. Cancer Inst. 104, 622-634.   DOI
73 Moolten, F. L. and Cooperband, S. R. (1970) Selective destruction of target cells by diphtheria toxin conjugated to antibody directed against antigens on the cells. Science 169, 68-70.   DOI
74 Okeley, N. M., Miyamoto, J. B., Zhang, X., Sanderson, R. J., Benjamin, D. R., Sievers, E. L., Senter, P. D. and Alley, S. C. (2010) Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin. Cancer Res. 16, 888-897.   DOI
75 Morschhauser, F., Radford, J., Van Hoof, A., Vitolo, U., Soubeyran, P., Tilly, H., Huijgens, P. C., Kolstad, A., d'Amore, F., Gonzalez Diaz, M., Petrini, M., Sebban, C., Zinzani, P. L., van Oers, M. H., van Putten, W., Bischof-Delaloye, A., Rohatiner, A., Salles, G., Kuhlmann, J. and Hagenbeek, A. (2008) Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J. Clin. Oncol. 26, 5156-5164.   DOI
76 Moskowitz, C. H., Nademanee, A., Masszi, T., Agura, E., Holowiecki, J., Abidi, M. H., Chen, A. I., Stiff, P., Gianni, A. M., Carella, A., Osmanov, D., Bachanova, V., Sweetenham, J., Sureda, A., Huebner, D., Sievers, E. L., Chi, A., Larsen, E. K., Hunder, N. N., Walewski, J. and Group, A. S. (2015) Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin's lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 385, 1853-1862.   DOI
77 Oflazoglu, E., Stone, I. J., Gordon, K., Wood, C. G., Repasky, E. A., Grewal, I. S., Law, C. L. and Gerber, H. P. (2008) Potent anticarcinoma activity of the humanized anti-CD70 antibody h1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker. Clin. Cancer Res. 14, 6171-6180.   DOI
78 Oroudjev, E., Lopus, M., Wilson, L., Audette, C., Provenzano, C., Erickson, H., Kovtun, Y., Chari, R. and Jordan, M. A. (2010) Maytansinoid-antibody conjugates induce mitotic arrest by suppressing microtubule dynamic instability. Mol. Cancer Ther. 9, 2700-2713.   DOI
79 Petersen, B. H., DeHerdt, S. V., Schneck, D. W. and Bumol, T. F. (1991) The human immune response to KS1/4-desacetylvinblastine (LY256787) and KS1/4-desacetylvinblastine hydrazide (LY203728) in single and multiple dose clinical studies. Cancer Res. 51, 2286-2290.
80 Perrino, E., Steiner, M., Krall, N., Bernardes, G. J. L., Pretto, F., Casi, G. and Neri, D. (2014) Curative properties of noninternalizing antibody-drug conjugates based on maytansinoids. Cancer Res. 74, 2569-2578.   DOI
81 Polson, A. G., Calemine-Fenaux, J., Chan, P., Chang, W., Christensen, E., Clark, S., de Sauvage, F. J., Eaton, D., Elkins, K., Elliott, J. M., Frantz, G., Fuji, R. N., Gray, A., Harden, K., Ingle, G. S., Kljavin, N. M., Koeppen, H., Nelson, C., Prabhu, S., Raab, H., Ross, S., Slaga, D. S., Stephan, J. P., Scales, S. J., Spencer, S. D., Vandlen, R., Wranik, B., Yu, S. F., Zheng, B. and Ebens, A. (2009) Antibody-drug conjugates for the treatment of non-Hodgkin's lymphoma: target and linker-drug selection. Cancer Res. 69, 2358-2364.   DOI
82 Pro, B., Advani, R., Brice, P., Bartlett, N. L., Rosenblatt, J. D., Illidge, T., Matous, J., Ramchandren, R., Fanale, M., Connors, J. M., Yang, Y., Sievers, E. L., Kennedy, D. A. and Shustov, A. (2012) Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J. Clin. Oncol. 30, 2190-2196.   DOI
83 Rabuka, D., Rush, J. S., deHart, G. W., Wu, P. and Bertozzi, C. R. (2012) Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nat. Protoc. 7, 1052-1067.   DOI
84 Ramakrishnan, B. and Qasba, P. K. (2002) Structure-based design of beta 1,4-galactosyltransferase I (beta 4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens beta 4Gal-T1 donor specificity. J. Biol. Chem. 277, 20833-20839.   DOI
85 Saito, G., Swanson, J. A. and Lee, K. D. (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv. Drug Deliv. Rev. 55, 199-215.   DOI
86 Ravry, M. J., Omura, G. A. and Birch, R. (1985) Phase II evaluation of maytansine (NSC 153858) in advanced cancer. A Southeastern Cancer Study Group trial. Am. J. Clin. Oncol. 8, 148-150.   DOI
87 Remillard, S., Rebhun, L. I., Howie, G. A. and Kupchan, S. M. (1975) Antimitotic activity of the potent tumor inhibitor maytansine. Science 189, 1002-1005.   DOI
88 Ricart, A. D. (2011) Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin. Cancer Res. 17, 6417-6427.   DOI
89 Saleh, M. N., Sugarman, S., Murray, J., Ostroff, J. B., Healey, D., Jones, D., Daniel, C. R., LeBherz, D., Brewer, H., Onetto, N. and LoBuglio, A. F. (2000) Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J. Clin. Oncol. 18, 2282-2292.   DOI
90 Sanderson, R. J., Hering, M. A., James, S. F., Sun, M. M., Doronina, S. O., Siadak, A. W., Senter, P. D. and Wahl, A. F. (2005) In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin. Cancer Res. 11, 843-852.
91 Sanofi (2014) Phase II two stage finding run in study of SAR3419, an anti-CD19 antibody-maytansine conjugate, administered as a single agent by intravenous infusion in patients with relapsed or refractory acute lymphoblastic leukemia- clinicaltrtals.gov NCT01440179 last updated august 26, 2014. .
92 Shen, B. Q., Xu, K., Liu, L., Raab, H., Bhakta, S., Kenrick, M., Parsons-Reponte, K. L., Tien, J., Yu, S. F., Mai, E., Li, D., Tibbitts, J., Baudys, J., Saad, O. M., Scales, S. J., McDonald, P. J., Hass, P. E., Eigenbrot, C., Nguyen, T., Solis, W. A., Fuji, R. N., Flagella, K. M., Patel, D., Spencer, S. D., Khawli, L. A., Ebens, A., Wong, W. L., Vandlen, R., Kaur, S., Sliwkowski, M. X., Scheller, R. H., Polakis, P. and Junutula, J. R. (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol. 30, 184-189.   DOI
93 Sapra, P., Stein, R., Pickett, J., Qu, Z., Govindan, S. V., Cardillo, T. M., Hansen, H. J., Horak, I. D., Griffiths, G. L. and Goldenberg, D. M. (2005) Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin. Cancer Res. 11, 5257-5264.   DOI
94 Scott, A. M., Lee, F. T., Tebbutt, N., Herbertson, R., Gill, S. S., Liu, Z., Skrinos, E., Murone, C., Saunder, T. H., Chappell, B., Papenfuss, A. T., Poon, A. M., Hopkins, W., Smyth, F. E., MacGregor, D., Cher, L. M., Jungbluth, A. A., Ritter, G., Brechbiel, M. W., Murphy, R., Burgess, A. W., Hoffman, E. W., Johns, T. G. and Old, L. J. (2007) A phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors. Proc. Natl. Acad Sci. U.S.A. 104, 4071-4076.   DOI
95 Seattle Genetics (2015) Seattle Genetics Submits Supplemental BLA to FDA for Phase 3 AETHERA Trial of ADCETRIS(R) (Brentuximab Vedotin) in Post-Transplant Hodgkin Lymphoma Patients at High Risk of Relapse, Seattle Genetics company website. http://investor.seattlegenetics.com/phoenix.zhtml?c=124860&p=irolnewsArticle&ID=2017717, Feb. 18, 2015
96 Steiner, M. and Neri, D. (2011) Antibody-radionuclide conjugates for cancer therapy: historical considerations and new trends. Clin. Cancer Res. 17, 6406-6416.   DOI
97 Trail, P. A., Willner, D., Lasch, S. J., Henderson, A. J., Hofstead, S., Casazza, A. M., Firestone, R. A., Hellstrom, I. and Hellstrom, K. E. (1993) Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261, 212-215.   DOI
98 Strop, P., Liu, S. H., Dorywalska, M., Delaria, K., Dushin, R. G., Tran, T. T., Ho, W. H., Farias, S., Casas, M. G., Abdiche, Y., Zhou, D., Chandrasekaran, R., Samain, C., Loo, C., Rossi, A., Rickert, M., Krimm, S., Wong, T., Chin, S. M., Yu, J., Dilley, J., Chaparro-Riggers, J., Filzen, G. F., O'Donnell, C. J., Wang, F., Myers, J. S., Pons, J., Shelton, D. L. and Rajpal, A. (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem. Biol. 20, 161-167.   DOI
99 Tolcher, A. W., Ochoa, L., Hammond, L. A., Patnaik, A., Edwards, T., Takimoto, C., Smith, L., de Bono, J., Schwartz, G., Mays, T., Jonak, Z. L., Johnson, R., DeWitte, M., Martino, H., Audette, C., Maes, K., Chari, R. V., Lambert, J. M. and Rowinsky, E. K. (2003) Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J. Clin. Oncol. 21, 211-222.   DOI
100 Tolcher, A. W., Sugarman, S., Gelmon, K. A., Cohen, R., Saleh, M., Isaacs, C., Young, L., Healey, D., Onetto, N. and Slichenmyer, W. (1999) Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J. Clin. Oncol. 17, 478-484.   DOI
101 Treon, S. P., Mitsiades, C., Mitsiades, N., Young, G., Doss, D., Schlossman, R. and Anderson, K. C. (1991) Tumor cell expression of CD59 Is associated with resistance to CD20 serotherapy in patients with B-cell malignancies. J. Immunother. 24, 263-271.
102 Ulbrich, K. and Subr, V. (2004) Polymeric anticancer drugs with pHcontrolled activation. Adv. Drug Deliv. Rev. 56, 1023-1050.   DOI