DOI QR코드

DOI QR Code

Role of polyethylene glycol (PEG) linkers: trends in antibody conjugation and their pharmacokinetics

  • Kondapa Naidu Bobba (Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University) ;
  • Abhinav Bhise (Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University) ;
  • Subramani Rajkumar (Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University) ;
  • Woonghee Lee (Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University) ;
  • Jeongsoo Yoo (Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University)
  • Received : 2020.12.15
  • Accepted : 2020.12.29
  • Published : 2020.12.31

Abstract

Polyethylene glycol (PEG) has been the most commonly used polymer for the past few decades in the field of biomedical applications due to its gold standard stealth effect. PEGylation of antibody-drug conjugates, liposomes, peptides, nanoparticles, and proteins is done to improve their pharmaceutical efficacy and pharmacokinetic properties. PEGylation of antibodies with various PEG linkers improves targeting ability by increasing the blood circulation time and thus enhances the biodistribution profiles. It also assists in minimizing the immediate capture by the reticuloendothelial system. In this review, we summarize the effect of PEG linkers in an antibody conjugation and their pharmacokinetics in the field of biomedical imaging.

Keywords

Acknowledgement

This work was supported by an R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2019R1A2C2084313, 2019R1I1A1A01041141, 2019H1D3A1A01102643, 2020M2D8A3094031 and 2020R1C1C1008442).

References

  1. Knop K, Hoogenboom R, Fischer D, Schubert SU. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 2010;49(36):6288-6308.
  2. Cheng T, Chuang K, Chen B, Roffler RS. Analytical Measurement of PEGylated Molecules. Bioconjugate Chem 2012;23(5):881-899.
  3. Kozmaab TG, Shimizu T, Ishida T, Szebeni J. Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv Drug Delivery Rev (DOI:10.1016/j.addr.2020.07.024).
  4. Kwon YL, Scollard AD, Reilly MR. 64Cu-Labeled Trastuzumab Fab-PEG24-EGF Radioimmunoconjugates Bispecific for HER2 and EGFR: Pharmacokinetics, Biodistribution, and Tumor Imaging by PET in Comparison to Monospecific Agents. Mol Pharmaceutics 2017;14(2):492-501.
  5. Rahim KM, Kota R, Haun BJ. Enhancing Reactivity for Bioorthogonal Pretargeting by Unmasking Antibody Conjugated trans-Cyclooctenes. Bioconjug Chem 2015;26(2): 352-360.
  6. Harris MJ, Chess BR. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discovery 2003;2(3):214-221.
  7. Roberts JM, Bentley DM, Harris MJ. Chemistry for peptide and protein PEGylation. Adv Drug Delivery Rev 2002;54(4):459-476.
  8. Stephenson AK, Chandra R, Zhuang ZP, Hou C, Oya S, Kung MP, Kung FH. Fluoro-pegylated (FPEG) imaging agents targeting Abeta aggregates. Bioconjugate Chem 2007;18(1):238-246.
  9. Ono M, Watanabe R, Kawashima H, Cheng Y, Kimura H, Watanabe H, Haratake M, Saji H, Nakayama M. Fluoropegylated chalcones as positron emission tomography probes for in vivo imaging of beta-amyloid plaques in Alzheimer's disease. J Med Chem 2009;52(20):6394-6401.
  10. Ogawa M, Kosaka N, Choyke LP, Kobayashi H. In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res 2009;69(4):1268-1272.
  11. Sano K, Nakajima T, Miyazaki K, Ohuchi Y, Ikegami T, Choyke LP, Kobayashi H. Short PEG-linkers improve the performance of targeted, activatable monoclonal antibody-indocyanine green optical imaging probes. Bioconjugate Chem 2013;24(5):811-816.
  12. Wu MA, Senter DP. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005;23(9):1137-1146.
  13. Watanabe R, Sato K, Hanaoka H, Harada T, Nakajima T, Kim I, Paik HC, Wu MA, Choyke LP, Kobayashi H. Minibody-indocyanine green based activatable optical imaging probes: The role of short polyethylene glycol linkers. ACS Med Chem Lett 2014;5(4):411-415.
  14. Altai1 M, Membreno R, Cook B, Tolmachev V, Zeglis MB. Pretargeted Imaging and Therapy. J Nucl Med 2017;58(10):1553-1559.
  15. Rondon A, Schmitt S, Briat A, Ty N, Maigne L, Quintana M, Membreno R, Zeglis MB, Navarro-Teulon I, Pouget JP, Chezal JM, Miot-Noirault E, Moreau E, Degoul F. Pretargeted radioimmunotherapy and SPECT imaging of peritoneal carcinomatosis using bioorthogonal click chemistry: probe selection and first proof-of-concept. Theranostics 2019;9(22):6706-6718.
  16. Rondon A, Ty N, Bequignat JB, Quintana M, Briat A, Witkowski T, Bouchon B, Boucheix C, Miot-Noirault E, Pouget JP, Chezal JM, Navarro-Teulon I, Moreau E, Degoul F. Antibody PEGylation in bioorthogonal pretargeting with trans-cyclooctene/tetrazine cycloaddition: in vitro and in vivo evaluation in colorectal cancer models. Scientific Reports 2017;7(14918):1-11.
  17. Modjahedi H, Dean C. The receptor for EGF and its ligands: expression, prognostic value and target for therapy in cancer. Int J Oncol 1994;4(2):277-296.
  18. Ethier PS. Growth factor synthesis and human breast cancer progression. J Natl Cancer Inst 1995;87(13):964-973.
  19. Mendelsohn J. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin Cancer Res 1997;3(12):2703-2707.
  20. Baselga J, Pfister D, Cooper RM, Cohen R, Burtness B, Bos M, D'Andrea G, Seidman A, Norton L, Gunnett K, Falcey J, Anderson V, Waksal H, Mendelsohn J. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol 2000;18(4):904-914.
  21. Wen X, Wu Q, Ke S, Ellis L, Charnsangavej C, Delpassand SA, Wallace S, Li C. Conjugation with 111In-DTPA-Poly(Ethylene Glycol) Improves Imaging of Anti-EGF Receptor Antibody C225. J Nucl Med 2001;42(10):1530-1537.
  22. DeVita TV, Chu E. A history of cancer chemotherapy. Cancer Res 2008;68(21):8643-8653.
  23. Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell 2018;9(1):33-46.
  24. Ojima I, Geng X, Wu X, Qu C, Borella PC, Xie H, Wilhelm DS, Leece AB, Bartle ML, Goldmacher SV, Chari JVR. Tumor-specific novel taxoid-monoclonal antibody conjugates. J Med Chem 2002;45(26):5620-3.
  25. Acchione M, Kwon H, Jochheim MC, Atkins MW. Impact of linker and conjugation chemistry on antigen binding, Fc receptor binding and thermal stability of model antibody-drug conjugates. MAbs 2012;4(3):362-372.
  26. Anderson WL, Tomasi TB. Polymer modification of antibody to eliminate immune complex and Fc binding. J Immunol Methods 1988;109(1):37-42.