• Title/Summary/Keyword: Antibody engineering

Search Result 354, Processing Time 0.032 seconds

Basic study on high gradient magnetic separation of nano beads using superconducting magnet for antibody purification

  • Jeongtae Kim;Insung Park;Gwantae Kim;Myunghwan Sohn;Sanghoon Lee;Arim Byun;Jin-sil Choi;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.60-64
    • /
    • 2023
  • The manufacturing process of antibody drugs comprises two main stages: the upstream process for antibody cultivation and the downstream process for antibody extraction. The domestic bio industry has excellent technology for the upstream process. However, it relies on the technology of foreign countries to execute downstream process such as affinity chromatography. Furthermore, there are no domestic companies capable of producing the equipment for affinity chromatography. High gradient magnetic separation technology using a high temperature superconducting magnet as a novel antibody separation and purification technology is introduced to substitute for the traditional technology of affinity chromatography. A specially designed magnetic filter was equipped in the bore of the superconducting magnet enabling the continuous magnetic separation of nano-sized paramagnetic beads that can be used as affinity magnetic nano beads for antibodies. To optimize the magnetic filter that captures superparamagnetic nanoparticles effectively, various shapes and materials were examined for the magnetic filter. The result of magnetic separation experiments show that the maximum separation and recovery ratio of superparamagnetic nanoparticles are 99.2 %, and 99.07 %, respectively under magnetic field (3 T) and flow rate (600 litter/hr).

Nano-Scale Immobilization of Antibody for the Construction of Immunosensor

  • Cho, Il-Hoon;Paek, Se-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.701-705
    • /
    • 2003
  • Performance of an immunosensor can usually be assessed in terms of its analytical sensitivity and specificity. Sensitivity, i.e., the detection limit of analyte, is particularly determined by the amount of analyte molecules bound to the capture antibody immobilized onto a solid surface. In order to increase the binding complexes, we have investigated an immobilization method of antibody allowing for a molecular arrangement of the protein on a selective surface of a nano-patterned solid substrate. This has not been accomplished only by a surface treatment with a chemical, but also by fragmentation of immunoglobulin. Such approach would offer a protocol of antibody immobilization for the construction of nano-immunosensor and eventually improve the sensitivity of detection.

  • PDF

Protein Array Fabricated by Microcontact Printing for Miniaturized Immunoassay

  • Lee Woo-Chang;Lim Sang-Soo;Choi Bum-Kyoo;Choi Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1216-1221
    • /
    • 2006
  • A protein array was fabricated for a miniaturized immunoassay using microcontact printing ($\mu$CP). A polydimethylsiloxane (PDMS) stamp with a 5 $\mu$m$\times$5 /$\mu$m dimension was molded from a silicon master developed by photolithography. Under optimal fabrication conditions, including the baking, incubation, and exposure time, a silicon master was successfully fabricated with a definite aspect ratio. An antibody fragment was utilized as the ink for the $\mu$CP, and transferred to an Au substrate because of the Au-thiol (-SH) interaction. The immobilization and antibody-antigen interaction were investigated with fluorescence microscopy. When human serum albumin (HSA) was applied to the protein array fabricated with an antibody against HSA, the detection limit was 100 pg/ml of HSA when using a secondary antibody labeled with a fluorescence tag. The fabricated protein array maintained its activity for 14 days.

Humoral Immunity against SARS-CoV-2 and the Impact on COVID-19 Pathogenesis

  • Lee, Eunjin;Oh, Ji Eun
    • Molecules and Cells
    • /
    • v.44 no.6
    • /
    • pp.392-400
    • /
    • 2021
  • It has been more than a year since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged. Many studies have provided insights into the various aspects of the immune response in coronavirus disease 2019 (COVID-19). Especially for antibody treatment and vaccine development, humoral immunity to SARS-CoV-2 has been studied extensively, though there is still much that is unknown and controversial. Here, we introduce key discoveries on the humoral immune responses in COVID-19, including the immune dynamics of antibody responses and correlations with disease severity, neutralizing antibodies and their cross-reactivity, how long the antibody and memory B-cell responses last, aberrant autoreactive antibodies generated in COVID-19 patients, and the efficacy of currently available therapeutic antibodies and vaccines against circulating SARS-CoV-2 variants, and highlight gaps in the current knowledge.

Fabrication of Protein A-Viologen Hetero Langmuir- Blodgett Film for Fluorescence Immunoassay

  • Lee, Woochang;Chun, Bum-Suk;Oh, Byung-Keun;Lee, Won-Hong;Park, Jeong-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.241-244
    • /
    • 2004
  • Protein A molecular thin film was fabricated as a platform of antibody-based biosensor. For the immobilization of the protein A thin film, a viologen multilayer was built up using the Langmuir-Blodgett (LB) technique, and then, protein A was adsorbed on the viologen LB film by an electrostatic interaction force, which was formed as a hetero-film structure. For the deposition of viologen, surface pressure area ($\pi$-A) isotherm was investigated. The fabricated protein A-viologen hetero LB film was investigated using atomic force microscopy (AFM). Using the developed molecular film, antibody immobilization and fluorescence measurement was carried out.

Recognition of Microorganisms Using SPR Biosensor Immobilized with Thiolated Antibody (티올화 항체고정형 SPR 바이오센서를 이용한 미생물 인식)

  • 조용진;김남수
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.167-172
    • /
    • 2003
  • This study was performed to fabricate a batch-type SPR biosensing system using a thiolated E. coli antibody coupling, and to explore the feasibility of real-time detection of E. coii in a stagnant sample solution. In advance. “O” and “K” antigenic serotype E. coli antibodies were thiolated with sulfo-LC-SPDP and dithiothreitol, and immobilized by chemisorption in the gold surface of compact SPR sensors. When the SPR biosensor immobilized with E. coli antibody monitored a E. coli solution, it took 3 to 5 min to stabilize. The SPR biosensing system developed in this study was able to detect E. coli in the range above 10$^4$ CFU/mL at the 0.05 significant level. Also, the SPR biosensor had possibility to significantly detect E. coli in the range of 10$^2$ to 10$^4$ CFU/mL in E. coli solutions. Meanwhile, when the SPR biosensor immobilized with 5. coli antibody was cleaned with NaOH solutions, its ability to detect E. coli largely decreased due to wash-out of the immobilized antibody. In order to reuse the SPR sensor, it should be antibody-immobilized newly.

Expression Vectors for Human-mouse Chimeric Antibodies

  • Xiong, Hua;Ran, Yuliang;Xing, Jinliang;Yang, Xiangmin;Li, Yu;Chen, Zhinan
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.414-419
    • /
    • 2005
  • The production of recombinant antibodies has been generally recognized as time-consuming and labor-intensive. The aim of our study is to construct mammalian expression vectors containing the cDNA encoding the human constant regions and murine variable regions to massively and cost-effectively produce full-length chimeric antibodies. Unique restriction sites flanking the Ig variable region were designed to allow for the replacement of variable regions generated by PCR. Western blot analysis of the chimeric antibodies revealed that the expressed products were of the predicted size, structure and specificity. The usefulness of the vectors was confirmed by construction of human-mouse chimeric antibody-HCAb which secretes murine antibody against the human colorectal cancer. Selected in medium containing gradually increasing methotrexate (MTX), clones with increased expression of the product gene can be efficiently generated. The secretion of recombinant chimeric antibody-HCAb yielded $30\;pg\;cell^{-1}\;day^{-1}$ at $10^{-6}\;M$ MTX. With this high-level expression from pools, the convenient and rapid production of over 100 milligram amounts per liter of recombinant antibodies may be achieved, which indicates the significant roles of pYR-GCEVH and pYR-GCEVL in the production of chimeric antibodies.

Emergent damage pattern recognition using immune network theory

  • Chen, Bo;Zang, Chuanzhi
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.69-92
    • /
    • 2011
  • This paper presents an emergent pattern recognition approach based on the immune network theory and hierarchical clustering algorithms. The immune network allows its components to change and learn patterns by changing the strength of connections between individual components. The presented immune-network-based approach achieves emergent pattern recognition by dynamically generating an internal image for the input data patterns. The members (feature vectors for each data pattern) of the internal image are produced by an immune network model to form a network of antibody memory cells. To classify antibody memory cells to different data patterns, hierarchical clustering algorithms are used to create an antibody memory cell clustering. In addition, evaluation graphs and L method are used to determine the best number of clusters for the antibody memory cell clustering. The presented immune-network-based emergent pattern recognition (INEPR) algorithm can automatically generate an internal image mapping to the input data patterns without the need of specifying the number of patterns in advance. The INEPR algorithm has been tested using a benchmark civil structure. The test results show that the INEPR algorithm is able to recognize new structural damage patterns.

Inhibition of Tumor Growth in a Mouse Xenograft Model by the Humanized Anti-HGF Monoclonal Antibody YYB-101 Produced in a Large-Scale CHO Cell Culture

  • Song, Seong-Won;Lee, Song-Jae;Kim, Chang-Young;Song, Jae-Kyung;Jung, Eui-Jung;Choi, Yong Bock;Min, Sung-Won;Oh, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1327-1338
    • /
    • 2013
  • The humanized anti-hepatocyte growth factor (HGF) monoclonal antibody (mAb) YYB-101 is a promising therapeutic candidate for treating various cancers. In this study, we developed a bioprocess for large-scale production of YYB-101 and evaluated its therapeutic potential for tumor treatment using a xenograft mouse model. By screening diverse chemically defined basal media formulations and by assessing the effects of various feed supplements and feeding schedules on cell growth and antibody production, we established an optimal medium and feeding method to produce 757 mg/l of YYB-101 in flask cultures, representing a 7.5-fold increase in titer compared with that obtained under non-optimized conditions. The optimal dissolved oxygen concentration for antibody production was 70% $pO_2$. A pH shift from 7.2 to 7.0, rather than controlled pH of either 7.0 or 7.2, resulted in productivity improvement in 5 L and 200 L bioreactors, yielding 737 and 830 mg/ml of YYB-101, respectively. The YYB-101 mAb highly purified by affinity chromatography using a Protein A column and two-step ion exchange chromatography effectively neutralized HGF in a cell-based assay and showed potent tumor suppression activity in a mouse xenograft model established with human glioblastoma cells.

Characterization and Epitope Mapping of KI-41, a Murine Monoclonal Antibody Specific for the gp41 Envelope Protein of the Human Immunodeficiency Virus-1

  • Shin, Song-Yub;Park, Jung-Hyun;Jang, So-Youn;Lee, Myung-Kyu;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.58-63
    • /
    • 1998
  • In this study, a mouse monoclonal antibody (mAb) against gp41(584-618), the immunodominant epitope protein, was generated. For this purpose, BALB/c mice were immunized with double branched multiple antigenic peptides derived from the HIV-1 gp41(584-618) sequence, and antibody-secreting hybridoma were produced by fusion of mice splenocytes with SP2/0 myeloma cells. One clone producing an antigen specific mAb, termed KI-41(isotype IgG1) was identified, whose specific reactivity against gp41(584-618) could be confirmed by ELISA and Western blot analysis. Epitope mapping revealed the recognition site of the mAb KI-41 to be located around the sequence RILAVERYLKDQQLLG, which comprises the N-terminal region within the immunized gp41(584-618) peptied. Since this mAb recognizes this specific epitope within the HIV-1 gp41 without any cross-reactivity to other immunodominant regions in the HIV-2 gp35, KI-41 will provide some alternative possibilities in further applications such as the development of indirect or competitive ELISA for specific antibody detection in HIV-1 infection or for other basic researches regarding the role and function of HIV-1 gp41.

  • PDF