• Title/Summary/Keyword: Antibody Engineering

Search Result 351, Processing Time 0.027 seconds

Quantitative Assay of Recombinant Hepatitis B Surface Antigen by Using Surface Plasmon Resonance Biosensor (Surface plasmon resonance 바이오센서를 이용한 재조합 B형 간염 표면항원의 정량분석)

  • Lee, E. K.;Ahn, S. J.;Yoo, C. H.;Ryu, K.;Jeon, J. Y.;Lee, H. I.;Choi, S. C.;Lee, Y. S.
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.20-25
    • /
    • 2002
  • We performed a basic experiment for rapid, on-line, real-time measurement of HBsAg by using a surface plasmon resonance biosensor to quantify the recognition and interaction of biomolecules. We immobilized the anti-HBsAg polyclonal antibody to the dextran layer on a CM5 chip surface which was pre-activated by N-hydroxysuccinimide for amine coupling. The binding of the HBsAg to the immobilized antibody was measured by the mass increase detected by the change in the SPR signal. The binding characteristics between HBsAg and its antibody followed typical monolayer adsorption isotherm. When the entire immobilized antibody was interacted, there was no additional, non-specific binding observed, which suggested the biointeraction was very specific as expected and independent of the ligand density. No significant steric hindrance was observed at 17.6 nm/$mm^2$ immobilization density. The relationship between the HBsAg concentration in the sample solution and the antigen bound to the chip surface was linear up to ca. $40\mu\textrm{g}$/mL, which is much wider than that of the ELISA method. It appeared the antigen-antibody binding was increased as the immobilized ligand density increased, but verification is warranted. This study showed the potential of this biosensor-based method as a rapid, simple, multi-sample, on-line assay. Once properly validated, it can serve as a more powerful method for HBsAg quantification replacing the current ELISA method.

Distinctive Combinations of RBD Mutations Contribute to Antibody Evasion in the Case of the SARS-CoV-2 Beta Variant

  • Tae-Hun Kim;Sojung Bae;Sunggeun Goo;Jinjong Myoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1587-1594
    • /
    • 2023
  • Since its first report in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a grave threat to public health. Virus-specific countermeasures, such as vaccines and therapeutics, have been developed and have contributed to the control of the viral pandemic, which has become endemic. Nonetheless, new variants continue to emerge and could cause a new pandemic. Consequently, it is important to comprehensively understand viral evolution and the roles of mutations in viral infectivity and transmission. SARS-CoV-2 beta variant encode mutations (D614G, N501Y, E484K, and K417N) in the spike which are frequently found in other variants as well. While their individual role in viral infectivity has been elucidated against various therapeutic antibodies, it still remains unclear whether those mutations may act additively or synergistically when combined. Here, we report that N501Y mutation shows differential effect on two therapeutic antibodies tested. Interestingly, the relative importance of E484K and K417N mutations in antibody evasion varies depending on the antibody type. Collectively, these findings suggest that continuous efforts to develop effective antibody therapeutics and combinatorial treatment with multiple antibodies are more rational and effective forms of treatment.

Monoclonal Antibody Refolding and Assembly: Protein Disulfide Isomerase Reaction Kinetics

  • Park, Sun-Ho;Ryu, Dewey D.Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.59-63
    • /
    • 2003
  • The protein disulfide isomerase (PDI) reaction kinetics has been studied to evaluate its effect on the monoclonal antibody (Mab) refolding and assembly which accompanies disulfide bend formation. The MAb in vitro assembly experiments showed that the assembly rate of heavy and light chains can be greatly enhanced in the presence of PDI as compared to the rate of assembly obtained by the air-oxidation. The reassembly patterns of MAb in-termediates were identical for both with and without PDI, suggesting that the PDI does not determine the MAb assembly pathway, but rather facilitates the rate of MAb assembly by promoting PDI catalyzed disulfide bond formation. The effect of growth rate on PDI activities for MAb production has also been examined by using continuous culture system. The specific MAb productivity of hybridoma cells decreased as the growth rate increased. However, PDI activities were nearly constant fur a wide range of growth rates except very high growth rate, indicating that no direct correlation between PDI activity and specific MAb productivity exists.

Monoclonal Antibody Refolding and Assembly: Protein Disulfide Isomerase Reaction Kinetics

  • Park, Sun-Ho;Ryu, Dewey D.Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.13-17
    • /
    • 1996
  • The protein disulfide isomerase(PDI) reaction kinetics has been studied to evaluate its effect on the monoclonal antibody(MAb) refolding and assembly which accompanies disulfide bond formation The MAb in vitro assembly experiments showed that the assembly rate of heavy and light chains can be greatly enhanced in the presence of PDI as compared to the rate of assembly obtained by the air-oxidation. The reassembly patterns of MAb intermediates were identical for both with and without PDI, suggesting that the PDI does not determine the MAb assembly pathway, but rather facilitates the rate of MAb assembly by promoting PDI catalyzed disulfide bond formation. The effect of growth rate on PDI activities for MAb production has also been examined by using continuous culture system. The specific MAb productivity of hybridoma cells decreased as the growth rate increased. However, PDI activities were nearly constant for a wide range of growth rates except very high growth rate, indicating that no direct correlation between PDI activity and specific MAb productivity exists.

  • PDF

Quantitative Assay of Hepatitis B Surface Antigen by Using Surface Plasmon Resonance Biosensor

  • Hwang, Sang-Yoon;Yoo, Chang-Hoon;Jeon, Jun-Yeoung;Choi, Sung-Chul;Lee, Eun-Kyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.309-314
    • /
    • 2005
  • We performed a basic experiment for the rapid, on-line, real-time measurement of hepatitis B surface antigen using a surface plasmon resonance biosensor. We immobilized anti­HBsAg (hepatitis B surface antigen) polyclonal antibody, as a ligand, to the dextran layer on a CM5 chip surface that had previously been activated by N-hydroxysuccinimide. A sample solution containing HBsAg was fed through a microfluidic channel, and the reflecting angle change due to the mass increase from the binding was detected. The binding characteristics between HBsAg and its polyclonal antibody followed the typical monolayer adsorption isotherm. When the entire immobilized antibody had interacted, no additional, non-specific binding occurred, suggesting the immunoreaction was very specific. The bound antigen per unit mass of the antibody was independent of the immobilized ligand density. No significant steric hindrance was observed at an immobilization density of approximately $17.6 ng/mm^2$. The relationship between the HBsAg concentration in the sample solution and the antigen bound to the ligand was linear up to ca. $40{\mu}g$/mL. This linearity was much higher than that of the ELISA method. It appeared the anti­gen-antibody binding increased as the immobilized ligand density increased. In summary, this study showed the potential of this SPR biosensor-based method as a rapid, simple and multi­sample on-line assay. Once properly validated, it may serve as a more efficient method for HBsAg quantification for replacing the ELISA.

Immunoglobulin Can Be Functionally Regulated by Protein Carboxylmethylation in Fc Region

  • Park Jong-Sun;Cho Jae-Youl;Kim Sung-Soo;Bae Hyun-Jin;Han Jeung-Whan;Lee Hyang-Woo;Hong Sung-Youl
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.384-393
    • /
    • 2006
  • Protein carboxylmethylation methylates the free carboxyl groups in various substrate proteins by protein carboxyl O-methyltransferase (PCMT) and is one of the post-translational modifications. There have been many studies on protein carboxylmethylation. However, the precise functional role in mammalian systems is unclear. In this study, immunoglobulin, a specific form of $\gamma-globulin$, which is a well-known substrate for PCMT, was chosen to investigate the regulatory roles of protein carboxylmethylation in the immune system. It was found that the anti-BSA antibody could be carboxylmethylated via spleen PCMT to a level similar to $\gamma-globulin$. This carboxylmethylation increased the hydrophobicity of the anti-BSA antibody up to 11.4%, and enhanced the antigen-binding activity of this antibody up to 24.6%. In particular, the Fc region showed a higher methyl accepting capacity with 80% of the whole structure level. According to the amino acid sequence alignment, indeed, 7 aspartic acids and 5 glutamic acids, as potential carboxylmethylation sites, were found to be conserved in the Fc portion in the human, mouse and rabbit. The carboxylmethylation of the anti-BSA antibody was reversibly demethylated under a higher pH and long incubation time. Therefore, these results suggest that protein carboxylmethylation may reversibly regulate the antibody-mediated immunological events via the Fc region.

Effect of Salvia plebeia on IgE antibody mediated allergic reaction in rats

  • Shin, Tae-Yong;Kim, Dae-Keun;Choi, Young-Kyun;Kim, Yong-Jin;Choi, Dong-Sung;Kim, Sang-Hyun;An, Nyeon-Hyung
    • Advances in Traditional Medicine
    • /
    • v.1 no.2
    • /
    • pp.29-35
    • /
    • 2000
  • The effect of aqueous extract of Salvia plebeia R. Br. (Labiatae) (AESP) on immunoglobulin (lgE) antibody mediated allergic reactions in rats was investigated. AESP inhibited passive cutaneous anaphylaxis (PCA) when intravenously, intraperitoneally, and orally administered. AESP dose-dependently inhibited histamine release from rat peritoneal mast cells activated by anti-DNP IgE antibody. Moreover, AESP had an inhibitory effect on anti-DNP IgE antibody induced $TNF-{\alpha}$ production from RPMC. These results suggest that AESP inhibit the IgE-mediated allergic reaction in rats.

  • PDF

Egg Yolk Antibody and Its Application

  • Kim, Mujo;Shinji Higashiguchi;Yoshitomo Iwamoto;Yang, Han-Chul;Cho, hong-Yon;Hsjime Hatta
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.79-83
    • /
    • 2000
  • A han transfers her serum immunoglobulin G to the agg (IgY) and gives immunity to her offspring. Therefore, The hen agg can be an effective supplier of a large amount of antigen specific antibody that accumulates in the egg yolk. Antigen specific antibody has been widely used for immunological analysis in the field of diagnosis as well as pure scientific research. The production and separation technology of IgY is demonstrated in the present study.

  • PDF

Production of Egg Yolk Antibody (IgY) Against Human Placental DNA-Dependent RNA Polymerase II

  • Lee, Yoon-Ik;Surzycki, Stefan S.;Lee, Young-Ik
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.27-32
    • /
    • 1995
  • Polyclonal antibodies against human DNA-dependent RNA polymerase II (HPP II) were generated from chicken egg yolk after immunization with RNA polymerase II as an antigen. The antibodies from egg yolk (IgY) were purified and characterized. IgY showed a specificity against DNA-dependent RNA polymerase II, and was a polyclonal antibody against 12 subunits of polymerase II. An amount of 0.35 mg of IgY was obtained freman HPP II-Sepharose affinity column using 10 eggs from a chicken immunized against RNA polymerase II as an antigen. These antibodies can be used for isolating the genes for RNA polymerase II components, and for in vitro transcription assays using HP-RNA polymerase II.

  • PDF

Purification of Phytase from Aspergillus ficuum and Production of Anti-phytase Antibody (Aspergillus ficuum의 Phytase의 정제와 Anti-phytase 항체생산)

  • Kim, Keun
    • The Korean Journal of Mycology
    • /
    • v.27 no.4 s.91
    • /
    • pp.299-303
    • /
    • 1999
  • Phytase(myo-inositol-hexakis phosphate 3-phosphohydrolase, E C 3.1.3.8) sequentially hydrolyzes phytate to myo-inositol and inorganic phosphate. Phytase of Aspergillus ficuum was purified to homogeneity using ultrafiltration, cation exchange column and anion exchange column. It's molecular weight is estimated as around 90,000 by SDS-PAGE. Antibody against the phytase was produced by immunizing mice with the purified phytase. The titer of the antibody was determined to be 1/25,000.

  • PDF