• 제목/요약/키워드: Antibiotic resistance gene

Search Result 207, Processing Time 0.025 seconds

Description of 17 unrecorded bacterial species isolated from freshwater showing antibiotic resistance in Korea

  • Baek, Kiwoon;Kim, Eui-Jin;Han, Ji-Hye;Choi, Ahyoung
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.2
    • /
    • pp.289-298
    • /
    • 2020
  • As part of the research program "2018 Rapid screening and identification of freshwater microorganisms using MALDI-TOF/MS library" freshwater samples were collected from a branch of the Nakdong River. Almost 300 antibiotic-resistant bacterial strains were isolated from freshwater samples and subsequently identified by 16S rRNA gene sequencing. Seventeen strains among the isolates shared high 16S rRNA gene sequence similarity (>99.0%) with known species that were not previously recorded in Korea, and each of the isolates also formed a robust phylogenetic clade with the closest species. These species were phylogenetically diverse, belonging to four phyla, seven classes, 10 orders, and 13 genera. At the genus and class level, the previously unrecorded species belonged to Rhodovarius, Xanthobacter, and Shinella of the class Alphaproteobacteria; Ottowia, Simplicispira, and Zoogloea of Betaproteobacteria; Pseudomonas, Acinetobacter, and Shewanella of Gammaproteobacteria; Arcobacter of Epsilonproteobacteria; Sphingobacterium of Sphingobacteriia; Trichococcus of Bacilli; and Leucobacter of Actinobacteria. The previously unrecorded species were further characterized by examining their gram-staining, colony and cell morphology, biochemical properties, and phylogenetic position.

Cloning of tlrD, 23S rRNA Monomethyltransferase Gene, Overexpression in Eschepichia coli and Its Activity (235 rRNA Monomethyltransferase인 tlrD의 클로닝, 이의 대장균에서 대량생산과 활성 검색)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.166-172
    • /
    • 2007
  • ERM proteins transfer the methyl group to $A_{2058}$ in 23S rRNA, which reduces the affinity of MLS (macrolide-lincosamide-streptogramin B) antibiotics to 23S rRNA, thereby confer the antibiotic resistance on micro-organisms ranging from antibiotic producers to pathogens and are classified into monomethyltransferase and dimethyltransferase. To investigate the differences between mono- and dimethyltransferase, tirD, a representative monomethylase gene was cloned in Escherichia coli from Streptomyces fradiae which contains ermSF, dimethylase gene as well to overexpress the TlrD for the first time. T7 promoter driven expression system successfully overexpress tlrD as a insoluble aggregate at $37^{\circ}C$ accumulating to around 55% of the total cell protein but unlike ErmSF, culturing at temperature as low as $18^{\circ}C$ did not make insoluble aggregate of protein into soluble protein. Coexpression of Thioredoxin and GroESL, chaperone was not helpful in turning into soluble protein either as in case of ErmSF. These results might suggest that differences between mono- and dimethylase could be investigated on the basis of the characteristics of protein structure. However, a very small amount of soluble protein which could not be detected by SDS-PAGE conferred antibiotic resistance on E. coli as in ErmSF which was expected from the activity exerted by monmethylase in a cell.

Molecular Characterization of Antibiotic Resistant Escherichia coli Strains Isolated from Tap and Spring Waters in a Coastal Region in Turkey

  • Ozgumus, Osman Birol;Celik-Sevim, Elif;Alpay-Karaoglu, Sengul;Sandalli, Cemal;Sevim, Ali
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.379-387
    • /
    • 2007
  • A hundred and seventeen antibiotic-resistant Escherichia coli strains were isolated from public tap and spring waters which were polluted by fecal coliforms. There were no significant differences between two water sources as to the coliform pollution level (p> 0.05). All E. coli isolates were detected to be resistant to one or more antibiotics tested. Nearly 42% of the isolates showed multiresistant phenotype. Three (2.5%) of these isolates contained class 1 integron. Sequencing analysis of variable regions of the class 1 integrons showed two gene cassette arrays, dfr1-aadA1 and dhfrA17-aadA5. Resistance to ampicillin, tetracycline or trimethoprim-sulfamethoxazole was transferable according to the results of conjugation experiments. The rate of tetracycline resistance was 15%. tet(A)-mediated tetracycline resistance was widespread among tetracycline-resistant E. coli isolates. Genotyping by BOX-polymerase chain reaction (BOX-PCR) showed that some of the strains were epidemiologically related. This is the first report on the prevalence and characterization of class 1 integron-containing E. coli isolates of environmental origin in Turkey.

Safety Assessment of Coagulase-Negative Staphylococci from Jeotgal, a Korean High-Salt-Fermented Seafood (젓갈 유래 Coagulase-Negative Staphylococci의 안전성 평가)

  • Jeong, Do-Won;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.84-90
    • /
    • 2015
  • Seventeen ampicillin-sensitive coagulase-negative staphylococci (CNS) isolates identified in jeotgal were subjected to assessments for antibiotic susceptibility and safety hazards. Fifteen of the 17 CNS strains exhibited phenotypic resistances to at least one antibiotic, and their prevailing resistance was to penicillin G. The dfrA gene for trimethoprim and tetK for tetracycline were amplified by PCR from the two strains, respectively. α-Hemolytic activity was not detected from the 17 strains, while five strains presented δ-hemolytic activity. Among the five strains, two strains exhibited β-hemolytic activity. Biofilm was formed from twelve strains. All of the tested phenotypic characteristics were expressed in a strain-specific manner.

Prevalence and Characterization of Vancomycin-Resistant Enterococci in Chicken Intestinles and Humans of Korea

  • Seong, Chi-Nam;Shim, Eun-Sook;Kim, Shin-Moo;Yoo, Jin-Cheol
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.246-253
    • /
    • 2004
  • The prevalence, genotype for antibiotic resistance and antibiotic susceptibility of vancomycin resistant enterococci (VRE) were determined. And molecular typings of the Enterococcus faecium isolates were analyzed. Prevalence of VRE in chickens, healthy children and intensive care unit (ICU) patients was 41.6%,7.9%, and 20.4%, respectively. Forty out of 54 isolates from chicken intestines, and 9 out of 11 from ICU patients were identified as Enterococcus faecium. Eleven out of 13 isolates from non-hospitalized young children were E. gallinarium. Twelve strains of E. faecalis were isolated from chicken intestines. The gene for the antibiotic resistance in E. faecium, and E. faecalis was vanA, while that in E. gallinarium was vanC1. E. faecium isolates were resistant to most of antibiotics except ampicillin and gentamicin. Molecular typing of the E. faecium strains obtained by pulse field gel electrophoresis and repetitive sequence-based PCR suggest that VRE transmit horizontally from poultry to humans, especially young children, via the food chains in Korea.

Genome Profiling for Health Promoting and Disease Preventing Traits Unraveled Probiotic Potential of Bacillus clausii B106

  • Kapse, N.G.;Engineer, A.S.;Gowdaman, V.;Wagh, S.;Dhakephalkar, P.K.
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.334-345
    • /
    • 2018
  • Spore-forming Bacillus species are commercially available probiotic formulations for application in humans. They have health benefits and help prevent disease in hosts by combating entero-pathogens and ameliorating antibiotic-associated diarrhea. However, the molecular and cellular mechanisms of these benefits remain unclear. Here, we report the draft genome of a potential probiotic strain of Bacillus clausii B106. We mapped and compared the probiotic profile of B106 with other reference genomes. The draft genome analysis of B106 revealed the presence of ADI pathway genes, indicating its ability to tolerate acidic pH and bile salts. Genes encoding fibronectin binding proteins, enolase, as well as a gene cluster involved in the biosynthesis of exopolysaccharides underscored the potential of B106 to adhere to the intestinal epithelium and colonize the human gut. Genes encoding bacteriocins were also detected, indicating the antimicrobial ability of this isolate. The presence of genes encoding vitamins, including Riboflavin, Folate, and Biotin, also indicated the health-promoting ability of B106. Resistance of B106 to multiple antibiotics was evident from the presence of genes encoding resistance to chloramphenicol, ${\beta}$-lactams, Vancomycin, Tetracycline, fluoroquinolones, and aminoglycosides. The findings indicate the significance of B. clausii B106 administration during antibiotic treatment and its potential value as a probiotic strain to replenish the health-promoting and disease-preventing gut flora following antibiotic treatment.

Detection of Inducible Clindamycin Resistance Genes (ermA, ermB, and ermC) in Staphylococcus aureus and Staphylococcus epidermidis

  • Mazloumi, Mohammad Javad;Akbari, Reza;Yousefi, Saber
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.449-457
    • /
    • 2021
  • The aim of the present study was to survey the frequency of inducible and constitutive phenotypes and inducible cross-resistant genes by regulating the methylation of 23S rRNA (ermA, ermB, and ermC) and macrolide efflux-related msrA gene in Staphylococcus aureus and S. epidermidis strains. A total of 172 bacterial isolates (identified based on standard tests), were examined in this study. Antibiotic susceptibility was determined by the disk diffusion method, and all isolates were evaluated with respect to inducible and constitutive phenotypes. The presence of ermA, ermB, ermC, and msrA genes was investigated by a PCR assay. The constitutive resistance phenotypes showed a higher distribution among the isolates. R phenotype was detected more among S. epidermidis isolates (46.25%). ermB, ermC, and msrA genes were detected more in methicillin-resistant S. aureus (MRSA) and methicillin-resistant S. epidermidis (MRSE) isolates that had R and HD phenotypes (>77% strains). The ermA gene had the lowest frequency among MRSA, MRSE, MSSA, and MSSE strains (<14% isolates). Distribution of inducible resistance genes in MRSA and MRSE strains, and possibly other species, leads to increased constitutive resistance to erythromycin, clindamycin, and other similar antibiotics. Therefore, it can be challenging to treat infections caused by these resistant strains.

Study on Convergence Technique Using the Antimicrobial Resistance and Virulence Genes Analysis in Escherichia coli (대장균의 항균제 내성과 독력 유전자의 분석을 활용한 융합기술연구)

  • Han, Jae-Il;Sung, Hyun-Ho;Park, Chang-Eun
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.77-84
    • /
    • 2015
  • This study was conducted to investigate the characteristics of antibiotic resistant E. coli. its antibiotic susceptibility and pathogenicity were analyzed via molecular convergence technique, for the relationship of antibiotic susceptibility and pathogenicity. The 60 isolated strains consisted of ESBL(+)(8) and ESBL(-)(52) strains. The ESBL(+)(8) strains consisted of 2 strains without a pathogenic gene, stb(3), flich7(1), and flich7-eae(2). The ESBL(-)(52) strains consisted of 26 strains without a pathogenic gene, stx1(3), stb(10), flich7(2), eae(2), stx1-flich7(2), stx1-stb(4), flich7-stb(2), and flich7-stb-eae(1). In conclusion, antibiotic resistance is increasingly, Focused on molecular convergence, showed the correlation of pathogenicity with antibiotic resistance was poor. However, It will be able to find the exact pathogenic factor in the future through convergence technique including the analysis of virulence genes.

Insight into Norfloxacin Resistance of Acinetobacter oleivorans DR1: Target Gene Mutation, Persister, and RNA-Seq Analyses

  • Kim, Jisun;Noh, Jaemin;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1293-1303
    • /
    • 2013
  • Antibiotic resistance of soilborne Acinetobacter species has been poorly explored. In this study, norfloxacin resistance of a soil bacterium, Acinetobacter oleivorans DR1, was investigated. The frequencies of mutant appearance of all tested non-pathogenic Acinetobacter strains were lower than those of pathogenic strains under minimum inhibitory concentration (MIC). When the quinolone-resistance-determining region of the gyrA gene was examined, only one mutant (His78Asn) out of 10 resistant variants had a mutation. Whole transcriptome analysis using a RNA-Seq demonstrated that genes involved in SOS response and DNA repair were significantly up-regulated by norfloxacin. Determining the MICs of survival cells after norfloxacin treatment confirmed some of those cells were indeed persister cells. Ten colonies, randomly selected from among those that survived in the presence of norfloxacin, did not exhibit increased MIC. Thus, both the low mutation frequency of the target gene and SOS response under norfloxacin suggested that persister formation might contribute to the resistance of DR1 against norfloxacin. The persister frequency increased without a change in MIC when stationary phase cells, low growth rates conditions, and growth-deficient dnaJ mutant were used. Taken together, our comprehensive approach, which included mutational analysis of the target gene, persister formation assays, and RNA sequencing, indicated that DR1 survival when exposed to norfloxacin is related not only to target gene mutation but also to persister formation, possibly through up-regulation of the SOS response and DNA repair genes.

Expression of Chitinase Gene in Solanum tuberosum L.

  • Park, Kyung-Hwa;Yang, Deok-Chun;Jeon, Jae-Heung;Kim, Hyun-Soon;Joung, Young-Hee;Hyouk Joung
    • Journal of Plant Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.85-90
    • /
    • 1999
  • In order to protect fungal diseases, leaf disc explants of Solanum tuberosum cultivar, Belchip, was infected with an Agrobacterium MP90 strain containing chimeric gene construct, consisting of antibiotic resistance and chitinase gene driven by the CaMV 35S promoter, for transformation. Regenerated multiple shoots were selected on a medium containing kanamycin and carbenicillin after exposure to Agrobacterium. The presence and integration of the npt II and chitinase gene were confirmed by polymerase chain reaction(PCR). Northern blot analysis indicated that the genes coding for the enzyme could be expressed in potato plants. The chitinase activity of transgenic potato plants was higher than the control potato.

  • PDF