• Title/Summary/Keyword: Antibiotic resistance gene

Search Result 197, Processing Time 0.033 seconds

Comparison of Airborne Bacterial Communities from a Hog Farm and Spray Field

  • Arfken, Ann M.;Song, Bongkeun;Sung, Jung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.709-717
    • /
    • 2015
  • Airborne bacteria from hog farms may have detrimental impacts on human health, particularly in terms of antibiotic resistance and pathogen zoonosis. Despite human health risks, very little is known about the composition and diversity of airborne bacteria from hog farms and hog-related spray fields. We used pyrosequencing analysis of 16S rRNA genes to compare airborne bacterial communities in a North Carolina hog farm and lagoon spray field. In addition, we isolated and identified antibiotic-resistant bacteria from both air samples. Based on 16S rRNA gene pyrosequence analysis, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were the dominant phyla in airborne bacterial communities from both hog farm and spray field sites. Within the Firmicutes genera, Clostridium spp. were more abundant in the hog farm, whereas Staphylococcus spp. were higher in the spray field. The presence of opportunitic pathogens, including several Staphylococcus species and Propionibacterium acnes, was detected in both bioaerosol communities based on phylogenetic analysis. The isolation and identification of antibiotic-resistant bacteria from air samples also showed similar results with dominance of Actinobacteria and Proteobacteria in both hog farm and spray field air. Thus, the existence of opportunistic pathogens and antibiotic resistant bacteria in airborne communities evidences potential health risks to farmers and other residents from swine bioaerosol exposure.

Methicillin-resistant or susceptible Staphylococcus pseudintermedius isolates from dogs and cats (개와 고양이에서 분리한 methicillin 내성 및 감수성 Staphylococcus pseudintermedius)

  • Cho, Jae-Keun;Lee, Mi-Ree;Kim, Jeong-Mi;Kim, Hwan-Deuk
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.3
    • /
    • pp.175-181
    • /
    • 2016
  • Staphylococcus pseudintermedius is an important opportunistic pathogen of dog and cats. Since 2006 there has been a significant emergence of methicillin-resistant S. pseudintermedius (MRSP) mainly due to clonal spread. The aim of this study was to investigated the prevalence of antibiotic resistance and presence of mecA and femA gene in 91 S. pseudintermedius isolates isolated from dogs and cats associated with various clinic infections. Methicillin resistance was confirmed by oxacillin disc diffusion method. MRSP isolate was detected 19 isolates (20.9%). MRSP and methicillin-resistant S. pseudintermedius (MSSP) isolates were highly resistant to penicillin, kanamycin, tetracycline, erythromycin, trimethoprim-sulfamethoxazole, clindamycin, ciprofloxacin, enrofloxacin and choloramphenicol (100~47.3% and 90.3~33.3%, respectively). About 90% of MRSP isolates were multi-drug resistance (resistance to at least five or more antimicrobials), and MSSP isolates was ca 74%. Among the 91 isolates, mecA gene was detected in 25 isolates (27.5%, 19 in MRSP isolates and 6 in MSSP isolates), but none carried the femA gene. Our results indicated MRSA isolates show a strong resistance to antimicrobials commonly used in veterinary medicine. A continuous surveillance and monitoring should be called for to prevent the contamination and spread of MRSP in dogs and cats.

Mechanisms of Self-protection and Genes Coding for Antibiotic Biosynthesis, Particularly, in Microorganisms which Produce Antibiotic Inhibitors of Protein Synthesis (항생물질생산균(抗生物質生産菌)의 단백질합성계조해항생물질(蛋白質合性系阻害抗生物質)에 대한 자기내성기구(自己耐性機構)와 생합성유전자(生合成遺傳子))

  • Paik, Soon-Young;Sugiyama, Masanori;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.31 no.4
    • /
    • pp.371-375
    • /
    • 1988
  • Streptomycetes are attractive microorganisms for their production of various secondary metabolites such as antibiotics. Now, the development of gene manipulation in this microorganisms enables the cloning and analysis of the genes which coding for antibiotic biosynthesis and resistance to the drug. In this article, we reviewed the studies with respect to the mechanisms of self-protection and cloning of the genes cloning for antibiotic biosynthesis, particularly, in microorganisms which produce antibiotic inhibitors of protein synthesis.

  • PDF

Characterization of Antibiotic Resistance of Aeromonas spp. and Pseudomonas spp. Isolated from Domestic Aquatic Animals (국내 수산생물로부터 분리된 Aeromonas spp. 및 Pseudomonas spp.의 항생제 내성에 관한 특성 분석)

  • Ye Ji Kim;Lyu Jin Jun;Young Juhn Lee;Ye Jin Ko;Yeong Eun Oh;Soo Ji Wo;Myoung Sug Kim;Joon Bum Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.388-400
    • /
    • 2023
  • Aeromonas spp. and Pseudomonas spp. are opportunistic pathogens widely distributed in the aquatic environment. To test the antibiotic susceptibility, the MIC of the 18 antibiotics mainly used in aquaculture were measured. Aeromonas spp. and Pseudomonas spp. straoms had different resistance patterns against most antibiotics. The MIC of tetracycline for four Aeromonas spp. strains (10.5%) was < 0.25 ㎍/mL. However, 0.5-4 ㎍/mL tetracycline inhibited most Pseudomonas spp. strains. The tet resistance performance of 14 genes including tet(B), tet(E), and tet(M) were investigated. Investigating, the tetracycline resistance gene of 38 Aeromonas spp. strains detected tet(A) in 21 strains (55.3%). Two Pseudomonas spp. strains showed high MIC values and no inhibition zone. tet gene analysis detected tet(D) in only one strain (5%).

Safety Evaluation of Bifidobacterium breve IDCC4401 Isolated from Infant Feces for Use as a Commercial Probiotic

  • Choi, In Young;Kim, Jinhee;Kim, Su-Hyeon;Ban, O-Hyun;Yang, Jungwoo;Park, Mi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.949-955
    • /
    • 2021
  • Previously, our research group isolated Bifidobacterium breve IDCC4401 from infant feces as a potential probiotic. For this study, we evaluated the safety of B. breve IDCC4401 using genomic and phenotypic analyses. Whole genome sequencing was performed to identify genomic characteristics and investigate the potential presence of genes encoding virulence, antibiotic resistance, and mobile genetic elements. Phenotypic analyses including antibiotic susceptibility, enzyme activity, production of biogenic amines (BAs), and proportion of D-/L-lactate were evaluated using E-test, API ZYM test, high-performance liquid chromatography (HPLC), and D-/L-lactic acid assay respectively. The genome of B. breve IDCC4401 consists of 2,426,499 bp with a GC content of 58.70% and 2,016 coding regions. Confirmation of the genome as B. breve was provided by its 98.93% similarity with B. breve DSM20213. Furthermore, B. breve IDCC4401 genes encoding virulence and antibiotic resistance were not identified. Although B. breve IDCC4401 showed antibiotic resistance against vancomycin, we confirmed that this was an intrinsic feature since the antibiotic resistance gene was not present. B. breve IDCC4401 showed leucine arylamidase, cystine arylamidase, α-galactosidase, β-galactosidase, and α-glucosidase activities, whereas it did not show production of harmful enzymes such as β-glucosidase and β-glucuronidase. In addition, B. breve IDCC4401 did not produce any tyramine, histamine, putrescine, cadaverine, or 2-phenethylamine, which are frequently detected BAs during fermentation. B. breve IDCC4401 produced 95.08% of L-lactate and 4.92% of D-lactate. Therefore, our findings demonstrate the safety of B. breve IDCC 4401 as a potential probiotic for use in the food industry.

CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases

  • Kim, Jun-Seob;Cho, Da-Hyeong;Park, Myeongseo;Chung, Woo-Jae;Shin, Dongwoo;Ko, Kwan Soo;Kweon, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.394-401
    • /
    • 2016
  • Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.

Analysis of Erythromycin Resistance Gene in Pathogenic Bacteria Isolates from Cultured Olive flounder Paralichthys olivaceus in Jeju (제주지역 양식 넙치(Paralichthys olivaceus)에서 분리한 어병세균 내 Erythromycin 내성 유전자 분석)

  • Lee, Da Won;Jun, Lyu Jin;Kim, Seung Min;Jeong, Joon Bum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.4
    • /
    • pp.397-403
    • /
    • 2018
  • We determined the resistance rates of pathogenic bacteria isolated from cultured olive flounder Paralichthys olivaceus to erythromycin (Em), antibiotic typically used in aquaculture and analyzed the genotypes of resistant bacteria using polymerase chain reaction (PCR). We isolated and utilized 160 isolates of Streptococcus parauberis, 1 of S. iniae, 66 of Edwardsiella tarda, 56 of Vibrio sp. and 23 of unidentified bacteria from presumed infected olive flounder from Jeju Island from March 2016 to October 2017. Of the 306 isolated strains, Em-resistant strains included 33 of S. parauberis, 39 of E. tarda and 2 of Vibrio sp. We conducted PCR to assess the resistance determination of Em-resistant strains. Five different types of Em-resistance genes were detected in the 74 Em-resistant strains: erm (A), erm (B), erm (C), mef (A) and mef (E); erm (A) and erm (B) were detected in 1 (3%) and 24 (72.7%) S. parauberis isolates, respectively. In E. tarda, erm (B) was detected in five isolates (12.8 %) and no Em-resistance genes were detected in the two Vibrio sp. isolates.

The Comparison of Disinfection Technologies for Managing Antibiotic Resistance ; Chlrorination, Ozonation and Electron Beam (항생제 내성 제어를 위한 소독 기법간의 비교 ; 염소, 오존 및 전자빔)

  • Oh, Junsik;Kim, Sungpyo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.797-803
    • /
    • 2013
  • Recently, a number of countries are now considering the reuse of effluents from wastewater treatment for various water applications. To improve the reuse of wastewater effluent, the development of appropriate micro-pollutant removal technology is necessary. Although several researche have been studied for removing micro-pollutants in water, little study has been conducted for the removal of emerging contaminant such as antibiotic resistant genes (ARGs) by disinfection processes. Therefore, the aim of this study is to compare the capacity of disinfection technologies such as chlorination, ozone, and electron beam, for removing antibiotic resistant bacteria (ARB) and ARGs. Based on this study, better ARG removal can be achieved by ozonation and electron beam. Relatively, high CT values of chlorination or ozonation are needed to remove ARB and ARG compared to conventional pathogens.

Antibiotic Resistance Patterns of Staphylococcus aureus and Methicillin Resistant S. aureus Isolated from the Specimen of Elementary School Students

  • Kim Tae-Un;Kim Dae-Hyun;Kim Yun-Tae
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.525-531
    • /
    • 2005
  • Staphylococcus aureus is a major cause of nosocomial infections and is one of the most commonly isolated bacterial species in the hospital and continues to be an important pathogen in both community and hospital-acquired infection. Methicillin resistant S. aureus (MRSA), which is associated with hospitals is now being isolated in the community. The purpose of this study is to investigate the carrier rate of S. aureus in the community, antibiotic resistance patterns of the organism, detection of MRSA and mecA gene in MRSA. Ninety strains $(46.4\%)$ of S. aureus were isolated from the nasal specimens of 194 elementary school students. Eighty-nine strains $(98.9\%)$ of 90 S. aureus were resistant to penicilin, 36 strains $(40.0\%)$ to erythromycin, 14 strains $(15.6\%)$ to fusidic acid, 11 strains $(12.2\%)$ to gentamycin, 9 strains $(10.0\%)$ to tobramycin, 5 strains $(5.6\%)$ to oxacillin, 4 strains $(4.4\%)$ to clindamycin, 2 strains $(2.2\%)$ to tetracycline, 1 strains $(1.1\%)$ to fosfomycin. None of $90(0\%)$ S. aureus isolates was resistant to ciprpfloxacin, trimethoprim/sulfamethoxazole, levofloxacin, linezolid, moxifloxacin, nitrofurantoin, norfloxacin, rifampicin, quinupristin/dalfopristin, teicoplanin, and vancomycin. Five strains $(5.6\%)$ of 90 S. aureus isolates were MRSA. The mecA gene was detected from five MRSA strains by PCR.

  • PDF

Cloning and Characterization of a Gene Cluster for the Production of Polyketide Macrolide Dihydrochalcomycin in Streptomyces sp. KCTC 0041BP

  • Jaishy Bharat Prasad;Lim Si-Kyu;Yoo Ick-Dong;Yoo Jin-Cheol;Sohng Jae-Kyung;Nam Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.764-770
    • /
    • 2006
  • Dihydrochalcomycin (GERI-155), produced by Streptomyces sp. KCTC-0041BP isolated from Korean soil, is a 16-membered macrolide antibiotic consisting of two deoxysugar moieties at C-5 and C-20 positions of a branched lactone ring. The cloning and sequencing of a gene cluster for dihydrochalcomycin biosynthesis revealed a 63-kb nucleotide region containing 25 open reading frames (ORFs). The products of all of these 25 ORFs playa role in dihydrochalcomycin biosynthesis and self-resistance against the compounds synthesized. At the core of this cluster lies a 39.6-kb polyketide synthase (PKS) region encoding eight modules in five giant multifunctional protein-coding genes (gerSI-SV). The genes responsible for the biosynthesis of deoxysugar moieties, D-chalcose and D-mycinose, and their modification and attachment were found on either side of this PKS region. The involvement of this gene cluster in dihydrochalcomycin biosynthesis was confirmed by disruption of the dehydratase (DH) domain in module 3 of the PKS gene and by metabolite analysis.