• Title/Summary/Keyword: Antibiotic residues

Search Result 79, Processing Time 0.022 seconds

Genotoxicity Study on Khal, a Halocidin Derivative, in Bacterial and Mammalian Cells

  • Kim, Youn-Jung;Kim, Mi-Soon;Jeon, Hee-Kyoung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.151-158
    • /
    • 2006
  • Khal was a synthetic congener of halocidin, a heterodimeric peptide consisting of 19 and 15 amino acid residues detected in Halocynthia aurantium. This compound was considered a candidate for the development of a novel peptide antibiotic. The genotoxicity of Khal was subjected to high throughput toxicity screening (HTTS) because they revealed strong antibacterial effects. Mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), single cell gel electrophoresis (Comet) assay and chromosomal aberration assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. These compounds are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. Before performing the comet assay, $IC_{20}$ of Khal was determined the concentration of $25.51\;{\mu}/mL\;and\;21.99\;{\mu}g/mL$ with and without S-9, respectively. In the comet assay, Khal was not induced DNA damage in mouse lymphoma cell line. Also, the mutation frequencies in the Khal-treated cultures were similar to the vehicle controls. It is suggests that Khal is non-mutagenic in MOLY assay. And no clastogenicity was observed in Khal-treated Chinese hamster lung cells. The results of this battery of assays indicate that Khal has no genotoxic potential in bacterial or mammalian cell systems. Therefore, we suggest that Khal, as the optimal candidates with both no genotoxic potential and antibacterial effects must be chosen.

Detection of residual antibiotics by TLC and EEC-4 plate method in slaughtered pigs (도축돈에서 TLC와 EEC-4 plate법을 이용한 항생물질 잔류조사)

  • 권오성;김순태;김영욱;손재권
    • Korean Journal of Veterinary Service
    • /
    • v.20 no.3
    • /
    • pp.313-321
    • /
    • 1997
  • The antibiotic residues of the urine, the liver, the lung, the kidney and the spleen in slaughtered pigs at Kyongbuk province were detected by TLC(505 kit) and EEC-4 plate method. 1. The positive rate of residual sulfamethazine which was detected by 505 kit in the urine (n=200) was 0.0%. 2. The positive rate of residual sulfamethazine which was detected by EEC-4 plate in the urine (n=126), the liver(n=98), the kidney(n=72), the spleen (n=68) and the lung(n=48) were 63%, 49%, 36%, 34% and 24%, respectively. 3. By EEC-4 plate method, the positive detection rates of the urine were 53.0% in BS(pH 6.0), 29.0% in BS(pH 7.2), 11.5% in BS(pH 8.0) and 13.0% in ML(pH 8.0) medium, that of the liver 41.5% in BS(pH 6.0), 22.0% in BS(pH 7.2), 6.5% in BS(pH 8.0) and 5.0%, in ML (pH 8.0) medium, that of the lung 21.0% in BS(pH 6.0), 9.5%, in BS(pH 7.2) and 8.5% in BS(pH 8.0) medium, and that of the kidney 31.5% in BS(pH 6.0), 14.5% in BS(pH 7.2), 20.0% in BS(pH 8.0) and 3.0% in ML(pH 8.0) medium. In the spleen, only in BS(pH 6.0) medium the positive rate was detected as 33.5 %. 4. The positive rates of samples which shown TLC-positive detected by EEC-4 plate method were 53.9% in no band, 77.8% in one band, 80.9% in two bands, 66.7% in three bands, respectively. In conclusion, the EEC-4 plate method could be applied for the detection of residual antibiotics in samples which shown as out of standard Rf values by TLC-method (SOS kit).

  • PDF

Inspections on the Food Safety of Pheasant and Mallard as a Meat Resource (식육자원(食肉資源)으로서의 꿩과 청둥오리 고기의 안전성(安全性) 검사(檢査))

  • Lee, Hun Jun;Oh, Hong Rock
    • Korean Journal of Agricultural Science
    • /
    • v.21 no.1
    • /
    • pp.28-36
    • /
    • 1994
  • Studies on the food-safety of pheasant and mallard, which belong to wild fowl as new meat resources. were carried out. The results were summarized as follows : 1. Food poisoning bacteria including Salmonella spp, was not detected from the inspections of small intestine, cecum, and rectum. 2. Parasite inspection tests on blood, feces, digestive organ, and thoracic organs were negative. 3. Antibiotic residues from the carcass muscle by simplified disk methods were not detected. 4. Seven different pesticide residue tests, such as DDT and BHT, on the muscle and liver were negative. 5. Four different kinds of toxic heavy metals such as Cd were much lower than the permissible concentration. Studies on the food safety tests and inspections from the pheasant and mallard were revealed that from taking this new food resources, the toxicities would be very low for the human health by the direct influences.

  • PDF

Anti-Endotoxin 9-Meric Peptide with Therapeutic Potential for the Treatment of Endotoxemia

  • Krishnan, Manigandan;Choi, Joonhyeok;Choi, Sungjae;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2021
  • Inflammatory reactions activated by lipopolysaccharide (LPS) of gram-negative bacteria can lead to severe septic shock. With the recent emergence of multidrug-resistant gram-negative bacteria and a lack of efficient ways to treat resulting infections, there is a need to develop novel anti-endotoxin agents. Antimicrobial peptides have been noticed as potential therapeutic molecules for bacterial infection and as candidates for new antibiotic drugs. We previously designed the 9-meric antimicrobial peptide Pro9-3 and it showed high antimicrobial activity against gram-negative bacteria. Here, to further examine its potency as an anti-endotoxin agent, we examined the anti-endotoxin activities of Pro9-3 and elucidated its mechanism of action. We performed a dye-leakage experiment and BODIPY-TR cadaverine and limulus amebocyte lysate assays for Pro9-3 as well as its lysine-substituted analogue and their enantiomers. The results confirmed that Pro9-3 targets the bacterial membrane and the arginine residues play key roles in its antimicrobial activity. Pro9-3 showed excellent LPS-neutralizing activity and LPS-binding properties, which were superior to those of other peptides. Saturation transfer difference-nuclear magnetic resonance experiments to explore the interaction between LPS and Pro9-3 revealed that Trp3 and Tlr7 in Pro9-3 are critical for attracting Pro9-3 to the LPS in the gram-negative bacterial membrane. Moreover, the anti-septic effect of Pro9-3 in vivo was investigated using an LPS-induced endotoxemia mouse model, demonstrating its dual activities: antibacterial activity against gram-negative bacteria and immunosuppressive effect preventing LPS-induced endotoxemia. Collectively, these results confirmed the therapeutic potential of Pro9-3 against infection of gram-negative bacteria.

Analysis of residual neomycin in honey by LC-MS/MS (LC-MS/MS에 의한 벌꿀 중 잔류 네오마이신의 분석)

  • Shim, Young-Eun;Jeong, Ji-Yoon;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.319-325
    • /
    • 2009
  • An effective and specific procedure for confirmation of neomycin, aminoglycoside antibiotic in honey was developed and validated. Honey was adjusted to pH 2 with 0.1M HCl and applied to weak cation-exchange SPE cartridge. Neomycin was eluted with basified methanol. Following separation by ion-pairing liquid chromatography, neomycin was analysed with positive electrospray ionization and MRM mode. Quantification was linear over the range of $5.0{\sim}250.0{\mu}g/kg$ ($r^2$ >0.9951). The precision (R.S.D.) and accuracy (as a bias) of quality control samples in honey ranged 11.5~18.7% and 10.9~20.9%, respectively. Established method can be applied to analysis of neomycin in honey.

Characterization of a New ${\beta}$-Lactamase Gene from Isolates of Vibrio spp. in Korea

  • Jun, Lyu-Jin;Kim, Jae-Hoon;Jin, Ji-Woong;Jeong, Hyun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.555-562
    • /
    • 2012
  • PCR was performed to analyze the ${\beta}$-lactamase genes carried by ampicillin-resistant Vibrio spp. strains isolated from marine environments in Korea between 2006 and 2009. All 36 strains tested showed negative results in PCR with the primers designed from the nucleotide sequences of various known ${\beta}$-lactamase genes. This prompted us to screen new ${\beta}$-lactamase genes. A novel ${\beta}$-lactamase gene was cloned from Vibrio alginolyticus KV3 isolated from the aquaculture water of Geoje Island of Korea. The determined nucleotide sequence (VAK-3 ${\beta}$-lactamase) revealed an open reading frame (ORF) of 852 bp, encoding a protein of 283 amino acids (aa), which displayed low homology to any other ${\beta}$-lactamase genes reported in public databases. The deduced 283 aa sequence of VAK-3, consisting of a 19 aa signal peptide and a 264 aa mature protein, contained highly conserved peptide segments specific to class A ${\beta}$-lactamases including the specific amino acid residues STFK (62-65), SDN (122-124), E (158), and RTG (226-228). Results from PCR performed with primers specific to the VAK-3 ${\beta}$-lactamase gene identified 3 of the 36 isolated strains as V. alginolyticus, Vibrio cholerae, and Photobacterium damselae subsp. damselae, indicating the utilization of various ${\beta}$-lactamase genes including unidentified ones in ampicillin-resistant Vibrio spp. strains from the marine environment. In a mating experiment, none of the isolates transfered the VAK-3 ${\beta}$-lactamase gene to the Escherichia coli recipient. This lack of mobility, and the presence of a chromosomal acyl-CoA flanking sequence upstream of the VAK-3 ${\beta}$-lactamase gene, led to the assumption that the location of this new ${\beta}$-lactamase gene was in the chromosome, rather than the mobile plasmid. Antibiotic susceptibility of VAK-3 ${\beta}$-lactamase was indicated by elevated levels of resistance to penicillins, but not to cephalosporins in the wild type and E. coli harboring recombinant plasmid pKV-3, compared with those of the host strain alone. Phylogenetic analysis showed that VAK-3 ${\beta}$-lactamase is a new and separate member of class A ${\beta}$-lactamases.

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF

Studies on the Function of the Rv2435c Gene of the Mycobacterium bovis BCG (Mycobacterium bovis BCG Rv2435c 유전자의 기능에 대한 연구)

  • Lee Seung-Sil;Bae Young-Min
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.415-422
    • /
    • 2005
  • library of the mutants was prepared by transposon mutagenesis of the Mycobacterium bovis BCG. We screened this library for the resistance to an anti-tuberculosis antibiotic, PA-824. Most of the mutants resistant to the PA-824 were not able to synthesize the coenzyme $F_{420}$ which is normally produced by the wild type M. bovis BCG strains. HPLC analysis of the cellular extract showed that one of those mutants which lost the ability to synthesize $F_{420}$ still produced F0. The insertion site of the transposon in this mutant was determined by an inverse PCR and the transposon was found to be inserted in the Rv2435c open reading frame (ORF). Rv2435c ORF is predicted to encode an 80.3 kDa protein. Rv2435c protein appears to be bound to the cytoplasmic membrane, its N-terminal present in the periplasm and C-terminal in the cytoplasm. The C-terminal portion of this protein is highly homologous with the adenylyl cyclases of both prokaryotes and eukaryotes. There are 15 ORFs which have homology with the class III AC proteins in the genome of the M. tuberculosis and M. bovis. Two of those, Rv1625c and Rv2435c, are highly homologous with the mammalian ACs. We cloned the cytoplasmic domain of the Rv2435c ORF and expressed it with six histidine residues attached on its C-terminal in Escherichia coli to find out if this protein is a genuine AC. Production of that protein in E. coli was proved by purifying the histidine-tagged protein by using the Ni-NTA resin. This protein, however, failed to complement the cya mutation in E. coli, indicating that this protein lacks the AC activity. All of the further attempts to convert this protein to a functional AC by a mutagenesis with UV or hydroxylamine, or construction of several different fusion proteins with Rv1625c failed. It is, therefore, possible that Rv2435c protein might affect the conversion of F0 to $F_{420}$ not by synthesizing cAMP but by some other way.

Mytilin B, an Antimicrobial Peptide from the Hemocyte of the Hard-shelled Mussel, Mytilus coruscus : Isolation, Purification, and Characterization (참담치(Mytilus coruscus) 혈구(hemocyte) 유래 항균 펩타이드 mytilin B의 정제 및 특성 분석)

  • Lee, Min Jeong;Oh, Ryunkyoung;Kim, Young-Ok;Nam, Bo-Hye;Kong, Hee Jeong;Kim, Joo-Won;Park, Jung Youn;Seo, Jung-Kil;Kim, Dong-Gyun
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1301-1315
    • /
    • 2018
  • We purified an antimicrobial peptide from the acidified hemocyte extract of Mytilus coruscus by $C_{18}$ reversed-phase high-performance liquid chromatography (RP-HPLC). The peptide was 4041.866 Da based on matrix-assisted laser desorption ionization time-of-flight mass spectrophotometer (MALDI-TOF/MS) and the 25 amino acids of the N-terminus sequence were identified. Comparison of this sequence of the purified peptide with the N-terminus sequences of other antimicrobial peptides revealed 100% identity with the mytilin B precursor of Mytilus coruscus. We also identified a 312 bp open-reading frame (ORF) encoding 103 amino acids based on the obtained amino acid residues. The nucleotide sequence of this ORF and the amino acid sequence also revealed 100% identity with the mytilin B precursor of Mytilus coruscus. We synthesized two antimicrobial peptides with an alanine residue in the C-terminus, and designated them mytilin B1 and B2. These two antimicrobial peptides showed antimicrobial activity against gram-positive bacteria, including Bacillus cereus and Streptococcus parauberis (minimal effective concentration, MECs $41.6-89.7{\mu}g/ml$), gram-negative bacteria, including Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Providencia stuartii, Pseudomonas aeruginosa, and Vibrio ichthyoenteri (MECs $7.4-39.5{\mu}g/ml$), and the fungus Candida albicans (MECs $26.0-31.8{\mu}g/ml$). This antimicrobial activity was stable under heat and salt conditions. Furthermore, the peptides did not exhibit significant hemolytic activity or cytotoxic effects. These results suggest that mytilin B could be applied as alternative antibiotic agent, and they add to the understanding of the innate immunity of hard-shelled mussels.