• 제목/요약/키워드: Antibacterial resin

검색결과 36건 처리시간 0.028초

Antibacterial Activity of Pharbitin, Isolated from the Seeds of Pharbitis nil, against Various Plant Pathogenic Bacteria

  • Nguyen, Hoa Thi;Yu, Nan Hee;Park, Ae Ran;Park, Hae Woong;Kim, In Seon;Kim, Jin-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권10호
    • /
    • pp.1763-1772
    • /
    • 2017
  • This study aimed to isolate and characterize antibacterial metabolites from Pharbitis nil seeds and investigate their antibacterial activity against various plant pathogenic bacteria. The methanol extract of P. nil seeds showed the strongest activity against Xanthomonas arboricola pv. pruni (Xap) with a minimum inhibition concentration (MIC) value of $250{\mu}g/ml$. Among the three solvent layers obtained from the methanol extract of P. nil seeds, only the butanol layer displayed the activity with an MIC value of $125{\mu}g/ml$ against Xap. An antibacterial fraction was obtained from P. nil seeds by repeated column chromatography and identified as pharbitin, a crude resin glycoside, by instrumental analysis. The antibacterial activity of pharbitin was tested in vitro against 14 phytopathogenic bacteria, and it was found to inhibit Ralstonia solanacearum and four Xanthomonas species. The minimum inhibitory concentration values against the five bacteria were $125-500{\mu}g/ml$ for the n-butanol layer and $31.25-125{\mu}g/ml$ for pharbitin. In a detached peach leaf assay, it effectively suppressed the development of bacterial leaf spot, with a control value of 87.5% at $500{\mu}g/ml$. In addition, pharbitin strongly reduced the development of bacterial wilt on tomato seedlings by 97.4% at $250{\mu}g/ml$, 7 days after inoculation. These findings suggest that the crude extract of P. nil seeds can be used as an alternative biopesticide for the control of plant diseases caused by R. solanacearum and Xanthomonas spp. This is the first report on the antibacterial activity of pharbitin against phytopathogenic bacteria.

Comparative Study of the Biological Activity of Propolis Extracts with Various Countries of Origin as Cosmetic Materials (원산지별 프로폴리스 추출물의 화장품 소재로서의 생리활성 비교연구)

  • Jung, Eunsun;Weon, Jin Bae;Ji, Hyanggi;You, Jiyoung;Oh, Se-young;Kim, Hayeon;Xin, Yingji;Kim, Eun Bin;Heo, Kang-Hyuck;Park, Deokhoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제46권2호
    • /
    • pp.159-166
    • /
    • 2020
  • Propolis is a sticky resinous substance that is formed by the combination of honeybee secretions and resin of plants, which serves to protect from bacteria and viruses. This study aims to evaluate the efficacy of propolis extract from Korea (KPE), China (CPE), and Brazil (BPE) through antioxidant, antibacterial, whitening, and anti-inflammatory tests, and to examine their potential as cosmetic materials. KPE, CPE, and BPE showed significant antioxidant activities on flavonoid/polyphenol content and free radical scavenging activity. The antibacterial effect of propolis on skin flora was determined by measuring the minimal inhibitory concentration (MIC). KPE showed better antibacterial efficacy than CPE and BPE in C. acnes (KPE, CPE, and BPE: (62.5, 250, and 500) ㎍/mL, respectively). Furthermore, KPE inhibited the melanin synthesis in human epidermal melanocytes and production of nitric oxide and PGE2 induced by lipopolysaccharide (LPS) in mouse macrophages, which showed better than did CPE or BPE. Taken together, the propolis extracts can be applied to antioxidant, antibacterial, and anti-inflammatory ingredient for cosmetics, while KPE showed superior potential in antibacterial, anti-inflammatory, and whitening efficacies.

Manufacturing and Antibacterial Characteristics of Functional Non-woven Fabrics Including Nano-silver Particles (은 나노 입자를 함유한 기능성 부직포의 제조와 항균특성)

  • Ro, Duck-Kil;Hong, Young-Ki;Park, Eun-Hee
    • Textile Coloration and Finishing
    • /
    • 제20권6호
    • /
    • pp.18-25
    • /
    • 2008
  • The functional non-woven fabrics have been applied in various industry fields, such as clothing, hygiene, environment, medical and so forth. The functional non-woven fabrics were manufactured by meltblown and finishing processes. These functional non-woven fabrics were based on 5wt% masterbatch using 2,000ppm nano-silver resin composite. Silver is one of the most universal antimicrobial substances. Nano-technology enables us to expand the surface area of silver particles markedly. Silver nano particles were successfully produced less than 50nm in size. The functional non-woven fabrics including nano-silver particles showed excellent antibacterial activities against Staphylococcus aureus (ATCC 6538) and Klebsieila pneumoniae (ATCC 4352). From the results, functional non-woven fabrics including silver nano particels probably will be available as a good and safe antibiotic alternative, such as mask medium filter, water purifier filter, hygiene wet tissues, marine products pad and so forth.

Oxalic Acid from Lentinula edodes Culture Filtrate: Antimicrobial Activity on Phytopathogenic Bacteria and Qualitative and Quantitative Analyses

  • Kwak, A-Min;Lee, In-Kyoung;Lee, Sang-Yeop;Yun, Bong-Sik;Kang, Hee-Wan
    • Mycobiology
    • /
    • 제44권4호
    • /
    • pp.338-342
    • /
    • 2016
  • The culture filtrate of Lentinula edodes shows potent antimicrobial activity against the plant pathogenic bacteria Ralstonia solanacearum. Bioassay-guided fractionation was conducted using Diaion HP-20 column chromatography, and the insoluble active compound was not adsorbed on the resin. Further fractionation by high-performance liquid chromatography (HPLC) suggested that the active compounds were organic acids. Nine organic acids were detected in the culture filtrate of L. edodes; oxalic acid was the major component and exhibited antibacterial activity against nine different phytopathogenic bacteria. Quantitative analysis by HPLC revealed that the content of oxalic acid was higher in the water extract from spent mushroom substrate than in liquid culture. This suggests that the water extract of spent L. edodes substrate is an eco-friendly control agent for plant diseases.

α-Glucosidase inhibitory caged xanthones from the resin of Garcinia hanburyi

  • Jin, Young Min;Kim, Jeong Yoon;Lee, Soo Min;Tan, Xue Fei;Park, Ki Hun
    • Journal of Applied Biological Chemistry
    • /
    • 제62권1호
    • /
    • pp.81-86
    • /
    • 2019
  • A yellow resin (gamboge) from Garcinia hanburyi has been widely used as folk medicine due to its antibacterial and antitumor activities. We isolated four ${\alpha}$-glucosidase inhibitory compounds from the methanol extract of gamboge. The compounds (1-4) were identified as gambogoic acid (1), moreollic acid (2), gambogic acid (3), and 10-methoxygambogenic acid (4), respectively through spectroscopic data including 2D-NMR and HREIMS. All compounds were examined in the enzyme inhibition assay against ${\alpha}$-glucosidase to identify their inhibitory potencies and kinetic behavior. All compounds (1-4) showed enzyme inhibition against ${\alpha}$-glucosidase, but the activity was significantly affected by the methoxy group on C-10 of ring A and pentenyl pyran moiety of ring D. For example, compound 1 ($IC_{50}=41.4{\mu}M$) bearing pyran ring eight times effective that 4 ($IC_{50}=350.6{\mu}M$) having geranyl group itself. Most active compound was found out to be gambogoic acid (1) which was analyzed most abundant metabolite in gamboge by LC-ESI-MS/MS. In kinetic study, compounds 1 and 2 were proved as noncompetitive inhibitors.

Preparation of melamine-formaldehyde microcapsule by surfactants (안정화제에 따른 멜라민-포름알데히드 마이크로캡슐의 제조)

  • Oh, Seong-Dae;Choi, Seong-Ho;Lee, Se-Hee;Lee, Kwang-Pill;Kim, Sang-Ho
    • Analytical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.97-103
    • /
    • 2005
  • The various size and morphology microcapsules were prepared to produce smell sweet by heating condensation reaction of melamine and formaldehyde using 5-types of surfactants such as the laurylbenzenesulfonic acid sodium salt (SDS), polyvinylpyrrolidon (PVP), polyvinyl alcohol (PVA), Span-80 and 2-acrylamido-2-methyl-1-1 propanesulfonic acid (AMP). As result it was found that the size and morphology of microcapsule is intimately associated with a kind of surfactants. In order to prepare microcapsule with antibacterial, the silver nanoparticle was prepared by gamma-irradiation. microcapsule with silver nanoparticle was prepared.

Improved antimicrobial effect of ginseng extract by heat transformation

  • Xue, Peng;Yao, Yang;Yang, Xiu-shi;Feng, Jia;Ren, Gui-xing
    • Journal of Ginseng Research
    • /
    • 제41권2호
    • /
    • pp.180-187
    • /
    • 2017
  • Background: The incidence of halitosis has a prevalence of 22-50% throughout the world and is generally caused by anaerobic oral microorganisms, such as Fusobacterium nucleatum, Clostridium perfringens, and Porphyromonas gingivalis. Previous investigations on the structure-activity relationships of ginsenosides have led to contrasting results. Particularly, the antibacterial activity of less polar ginsenosides against halitosis-related bacteria has not been reported. Methods: Crude saponins extracted from the Panax quinquefolius leaf-stem (AGS) were treated at $130^{\circ}C$ for 3 h to obtain heat-transformed saponins (HTS). Five ginsenoside-enriched fractions (HTS-1, HTS-2, HTS-3, HTS-4, and HTS-5) and less polar ginsenosides were separated by HP-20 resin absorption and HPLC, and the antimicrobial activity and mechanism were investigated. Results: HPLC with diode-array detection analysis revealed that heat treatment induced an extensive conversion of polar ginsenosides (-Rg1/Re, -Rc, -Rb2, and -Rd) to less polar compounds (-Rg2, -Rg3, -Rg6, -F4, -Rg5, and -Rk1). The antimicrobial assays showed that HTS, HTS-3, and HTS-4 were effective at inhibiting the growth of F. nucleatum, C. perfringens, and P. gingivalis. Ginsenosides-Rg5 showed the best antimicrobial activity against the three bacteria, with the lowest values of minimum inhibitory concentration and minimum bactericidal concentration. One major reason for this result is that less polar ginsenosides can more easily damage membrane integrity. Conclusion: The results indicated that the less polar ginsenoside-enriched fraction from heat transformation can be used as an antibacterial agent to control halitosis.

Purification of Total Ginsesides with Macroporous Resins and Their Biological Activities

  • Li, Huayue;Jin, Haizhu;Lee, Dong-Geun;Lee, Jae-Hwa;Lee, Sang-Hyeon;Ha, Bae-Jin;Ha, Jong-Myung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • 제20권5호
    • /
    • pp.1321-1326
    • /
    • 2006
  • Total ginsenosides were purified and their antioxidant, antibacterial and anticancer activities were measured. The crude extracts of ginseng, which were extracted with 75% ethanol by ultrasonification method, were firstly purified on AB-8 macroporous adsorption column to remove water soluble impurities, and decolored on Amberlite IRA 900 Cl anion-exchange column. Then, they were purified on Amberlite XAD16 adsorption column to delete the non-polar impurities. Total ginsenosides contents of the purified extracts were 79.4%, 71.7% and 72.5% in cultured wild ginseng, red ginseng and white ginseng, which were significantly increased than those of crude extracts. All of the three extracts showed concentration-dependant scavenging activities against DPPH radicals, among which white ginseng showed the most powerful activity. Cultured wild ginseng roots showed strongest effect against both B. subtilis PM 125(Gram-positive) and E. coli D31 (Gram-negative) bacteria, while red ginseng and white ginseng only showed the activity against B. subtilis. According to the result of the MTT assay, ail of the three extracts inhibited the growth of U-937 human hohistiocytic lympma cell, which were significantly different (p < 0.05) when compared to the control.

Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

  • Nam, Ki-Young
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권3호
    • /
    • pp.207-214
    • /
    • 2014
  • PURPOSE. This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS. Polymerized PMMA denture acrylic disc ($20mm{\times}2mm$) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and $100{\mu}L$ of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at $37^{\circ}C$ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS. PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION. This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required.

Preparation and Properties of Functional PET Textured Yarn Coated with Aromatic Polymer (아로마틱 고분자를 적용한 기능성 PET 가공사 제조 및 특성)

  • Ahn, Dajeong;Choi, Chulhoon;Lee, Jaewoong;Lee, Sang Oh
    • Textile Coloration and Finishing
    • /
    • 제29권3호
    • /
    • pp.148-154
    • /
    • 2017
  • Many researches have been made on the processing technology of Poly(ethylene terephthalate) (PET), which is widely used for clothing and non-clothing applications. In this study, we coated PET filaments with m-aramid resin to improve heat resistance and antimicrobial properties. In order to enhance adhesion between PET and m-aramid polymer, the adhesive polymer was coated on the PET filaments using a winding speed of 100m/min and then treated with m-aramid. Scanning electron microscopy was used to analyze the surface of the adhesive polymer and m-aramid treated PET filament. The change of initial degradation temperature according to treatment was confirmed by thermogravimetric analysis. Antimicrobial activity analysis using bacterial reduction method showed that PET filament treated with adhesive polymer and m-aramid had an increased antibacterial effect compared to untreated PET filament.