Preparation of melamine-formaldehyde microcapsule by surfactants

안정화제에 따른 멜라민-포름알데히드 마이크로캡슐의 제조

  • Oh, Seong-Dae (Department of Chemistry, Hannam University) ;
  • Choi, Seong-Ho (Department of Chemistry, Hannam University) ;
  • Lee, Se-Hee (Department of Chemistry Graduate School, Kyungpook National University) ;
  • Lee, Kwang-Pill (Department of Chemistry Graduate School, Kyungpook National University) ;
  • Kim, Sang-Ho (Institute of Basic Science, Kyungpook National University)
  • 오성대 (한남대학교 자연과학부 화학과) ;
  • 최성호 (한남대학교 자연과학부 화학과) ;
  • 이세희 (경북대학교 대학원 화학과) ;
  • 이광필 (경북대학교 대학원 화학과) ;
  • 김상호 (경북대학교 기초과학연구소)
  • Received : 2004.09.08
  • Accepted : 2004.11.24
  • Published : 2005.04.25

Abstract

The various size and morphology microcapsules were prepared to produce smell sweet by heating condensation reaction of melamine and formaldehyde using 5-types of surfactants such as the laurylbenzenesulfonic acid sodium salt (SDS), polyvinylpyrrolidon (PVP), polyvinyl alcohol (PVA), Span-80 and 2-acrylamido-2-methyl-1-1 propanesulfonic acid (AMP). As result it was found that the size and morphology of microcapsule is intimately associated with a kind of surfactants. In order to prepare microcapsule with antibacterial, the silver nanoparticle was prepared by gamma-irradiation. microcapsule with silver nanoparticle was prepared.

Wall-material을 멜라민-포름알데히드 수지, core-material은 솔향오일, 그리고 5종류의 계면활성제, Laurylbenzenesulfonic acid sodium slat (SDS), Polyvinylpyrrolidon (PVP), Polyvinyl alcohol (PVA), Span-80 및 2-Acrylamido-2-methyl-1-1 propanesulfonic acid (AMP)을 사용하여 섬유제품용 향기 나는 마이크로캡슐을 제조하였다. 향기 나는 마이크로캡슐의 모양 및 형태는 계면활성제의 종류에 따라 다르다는 사실을 알았다. 더 나아가 항균성 및 향기 나는 마이크로캡슐을 제조하기 위하여 방사선법으로 은 나노콜로이드를 제조하고, 이 콜로이드 용액에서 마이크로캡슐의 제조도 시도하였다.

Keywords

References

  1. W. Gindl F. Zargar-Yaghubi and R. Wimmer, Bioresour. Technol., 87, 325-330(2003) https://doi.org/10.1016/S0960-8524(02)00233-X
  2. X.-Y. Shi and T.-W. Tand, Biomaterials, 23, 4469-4473(2002) https://doi.org/10.1016/S0142-9612(02)00165-5
  3. K. Hong and S. Park, Mater. Chem. Phys., 64, 20-24(2000) https://doi.org/10.1016/S0254-0584(99)00241-2
  4. K. Mequanint and R. Sanderson, Polymer, 44, 2631-2639(2003) https://doi.org/10.1016/S0032-3861(03)00154-X
  5. K. Hong and S. Park, React. Funct. Polym., 42, 193-200(1999) https://doi.org/10.1016/S1381-5148(98)00068-6
  6. A. Derylo-Marczewska, J. Goworek, R. Kusak, and W. Zgrajka, Appl. Sur. Sci., 195, 117-125 (2002) https://doi.org/10.1016/S0169-4332(02)00536-6
  7. C. Li, X. Pan, C. Hua, J. Su, and H. Tian, Europ. Polym. J., 39, 1091-1097(2003) https://doi.org/10.1016/S0014-3057(02)00361-0
  8. D. R. Shackle and S. Ala, US patent, No.4,025,455(1977)
  9. Y.H. Lee, C.A. Kim, W.H. Jang, H.J. Choi and M.S. Jhon, Polymer, 42, 8277-8283(2001) https://doi.org/10.1016/S0032-3861(01)00342-1
  10. H., Kumon, H., Hashimoto, M., Nishimura, K., Monden and N., Ono, Int. J. Antimicrobial Agents, 17, 311-316(2001) https://doi.org/10.1016/S0924-8579(00)00360-5
  11. L., Stanislawsky, X., Daniau, A., Lautie and M., Goldberg, J. Biomed. Mater. Res. (Appl. Biomater.), 48, 277-288(1999) https://doi.org/10.1002/(SICI)1097-4636(1999)48:3<277::AID-JBM11>3.0.CO;2-T
  12. M. A., Wassall, M., Santin, C., Isalberti, M., Cannas and S. P., Denyer, J. Biomed. Mater. Res., 36, 325-330(1997) https://doi.org/10.1002/(SICI)1097-4636(19970905)36:3<325::AID-JBM7>3.0.CO;2-G
  13. S.-H. Choi, S.H. Lee, Y.M. Hwang, K.P. Lee, and H.D. Kang, Radiati. Phys. Chem., 67, 517-521(2003) https://doi.org/10.1016/S0969-806X(03)00097-5
  14. S.-H. Choi, K.P. Lee, and S.B. Park, Studies in Surface Science and Catalysis, 146, 93-96 (2003) https://doi.org/10.1016/S0167-2991(03)80335-X