• Title/Summary/Keyword: Antibacterial properties

Search Result 610, Processing Time 0.027 seconds

Antibacterial Activity of CNT-Ag and GO-Ag Nanocomposites Against Gram-negative and Gram-positive Bacteria

  • Yun, Hyosuk;Kim, Ji Dang;Choi, Hyun Chul;Lee, Chul Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3261-3264
    • /
    • 2013
  • Carbon nanocomposites composed of carbon nanostructures and metal nanoparticles have become one of useful materials for various applications. Here we present the preparation and antibacterial activity of CNT-Ag and GO-Ag nanocomposites. Their physical properties were characterized by TEM, XPS, and Raman measurements, revealing that size-similar and quasi-spherical Ag nanoparticles were anchored to the surface of the CNT and GO. The antibacterial activities of CNT-Ag and GO-Ag were investigated using the growth curve method and minimal inhibitory concentrations against Gram-negative and Gram-positive bacteria. The antibacterial activities of the carbon nanocomposites were slightly different against Gram-positive and Gram-negative bacteria. The proposed mechanism was discussed.

Fabrication of Antibacterial Biodegradable films Using a Radiation-induced Reduction Method

  • Jung, Chan-Hee;Cho, Yong-Jun;Jung, Jin-Mook;Hwang, In-Tae
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.141-147
    • /
    • 2013
  • The simple and facile radiation technique of the preparation of antibacterial biodegradable polymer films containing silver nanoparticles (Ag NPs) was described. The biodegradable poly(butylene adipate-co-terephthalate) (PBAT) films containing silver trifluoroacetate (Ag TFA) were prepared by a solvent casting method, and then the films were irradiated by electron beams at the various doses ranging from 20 to 200 kGy to form Ag NPs in the biodegradable polymers. The results of UV-vis and FE-SEM/EDX analyses revealed that the Ag NPs were successfully formed in the PBAT matrix during the electron beam irradiation, and their amounts were dependant on the absorbed dose and Ag TFA concentrations. Furthermore, on the basis of the results of the antibacterial test through disk diffusion and colony counting test, the irradiated PBAT/Ag TFA films exhibited the antibacterial property due to the formation of Ag NPs.

Preparation of Shark Byproduct Extract and Gellan Gum based Antibacterial Film Containing Green Tea Extract

  • Bak, Jing-Gi;Kim, Jin;Ohk, Seung-Ho
    • Biomedical Science Letters
    • /
    • v.28 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • In this study, we tried to examine the possibility of developing a dental product such as tooth decay prevention and oral hygiene by manufacturing a natural polymer film for oral use. Natural polymer films were prepared from shark byproduct extract (SBE) and gellan gum (GG). As an antibacterial substance, the antibacterial activity of green tea extract against tooth decay-causing bacteria was measured. An film was prepared by adding green tea extract to the composition of SBE and GG. The mechanical, solubility, moisture content and antibacterial function of the prepared film were investigated in detail. Also, the incorporation of GTE into the SBE/GG film improved the physical performance of the film. Increasing the content of GTE improved the antioxidant and antibacterial properties of the film. Formulation of antimicrobial SBE/GG film containing green tea extract was established and these results evidently showed potential for cavity prevention products application.

Antibacterial and remineralization effects of orthodontic bonding agents containing bioactive glass

  • Kim, You-Min;Kim, Dong-Hyun;Song, Chang Weon;Yoon, Seog-Young;Kim, Se-Yeon;Na, Hee Sam;Chung, Jin;Kim, Yong-Il;Kwon, Yong Hoon
    • The korean journal of orthodontics
    • /
    • v.48 no.3
    • /
    • pp.163-171
    • /
    • 2018
  • Objective: The aim of this study was to evaluate the mechanical and biological properties of orthodontic bonding agents containing silver- or zinc-doped bioactive glass (BAG) and determine the antibacterial and remineralization effects of these agents. Methods: BAG was synthesized using the alkali-mediated solgel method. Orthodontic bonding agents containing BAG were prepared by mixing BAG with flowable resin. $Transbond^{TM}$ XT (TXT) and $Charmfil^{TM}$ Flow (CF) were used as controls. Ion release, cytotoxicity, antibacterial properties, the shear bond strength, and the adhesive remnant index were evaluated. To assess the remineralization properties of BAG, micro-computed tomography was performed after pH cycling. Results: The BAG-containing bonding agents showed no noticeable cytotoxicity and suppressed bacterial growth. When these bonding agents were used, demineralization after pH cycling began approximately 200 to $300{\mu}m$ away from the bracket. On the other hand, when CF and TXT were used, all surfaces that were not covered by the adhesive were demineralized after pH cycling. Conclusions: Our findings suggest that orthodontic bonding agents containing silver- or zinc-doped BAG have stronger antibacterial and remineralization effects compared with conventional orthodontic adhesives; thus, they are suitable for use in orthodontic practice.

Characterization of Antibacterial activity and Synthesis of Sulfanilamide Polymer using Crosslinking Agent (가교제를 이용한 Sulfanilamide 중합체의 합성과 항균특성)

  • Kim, Jong-Woan;Yoon, Chul-Hun;Hwang, Sung-Kwy;Kong, Seung-Dae;Lee, Han-Seab
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.37-42
    • /
    • 2000
  • Drug delivery system(DDS) have been actively studied for the past twenty years. Dual action agents are unique chemical entities comprised of two different types of antibacterial compounds covalently linked together in a single molecule in such a way that both components are able to exert their bactericidal properties. In spite of the advent of the antibacterial agent the sulfa agents are the most widely used antibacterial agent today. In this study, new antibacterials derivative was synthesized using glutaraldehyde such as crosslinking agent for the purpose of dual-action as DDS study. Antibacterial activity of these new synthetic derivative between their structures and activities were examined by disc diffusion method. As a result, new synthetic derivative exhibited the broad antibacterial activities against Gram(+) and Gram(-) bacilli. Especially, the antibacterial effect of new synthetic derivative against Gram negative(Esherichia. coli) was much stronger than that against Gram positive.

The Functional Properties of Cellulose Fabric Treated with TiO2 - Focusing on Antibacterial activity, Deodorization & UV cut ability - (광촉매를 이용한 셀룰로오스섬유의 기능화에 관한 연구 - 항균·소취성 및 자외선 차폐성을 중심으로 -)

  • Kwon, Oh-Kyung;Moon, Jae-Gi;Son, Bu-Hun;Choi, Young-Hee
    • Fashion & Textile Research Journal
    • /
    • v.5 no.4
    • /
    • pp.395-398
    • /
    • 2003
  • In this study, we measured the antibacterial activities, deodorization, UV cut ability, whiteness and SEM, according to the size($5{\mu}m$, $15{\mu}m$) of $TiO_2$, concentration(3%, 5%, 10%) and dipping temperature($50^{\circ}C$, $70^{\circ}C$) with using anatase type of $TiO_2$ photocatalyst. Photocatalyst is the substance which carries out functions, such as decomposition, removal, deodorization, antibacterial, etc. of a contaminant, in a place with light based on an oxidation-reduction reaction. The results of this study were as follow. Antibacterial activities are increased with increasing of the $TiO_2$'s concentration, and $TiO_2$ has high antibacterial activities for Staphylococcus aureus but it has low antibacterial activities for Klebsiella pneumoniae. The deodorization and UV cut ability is very good, therefore be able to get good effects with using only 3% of $TiO_2$. Every effects are increased by using small size of $TiO_2$ and high dipping temperature.

EFFECT OF POLYPHOSPHATE IN ROOT CANAL SEALERS ON THE GROWTH OF ORAL BACTERIA (Polyphosphate가 함유된 근관충전재가 구강세균의 성장에 미치는 영향)

  • 박석범;최기운;최호영
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.141-152
    • /
    • 2001
  • Eliminating the infecting bacteria of the root canal system and preventing reinfection must be the main objectives of all endodontic works. None of commercially available root canal sealers have the properties of desirable tissue compatibility and strong antibacterial activity. The purpose of this study is to develope an ideal root canal sealer using commercially available polyphosphate (polyP), Calgon, which is known to be antibacterial and safe. For the study. resin type AH26, zinc oxide eugenol type Tubli Seal. Ca(OH)$_2$ type Apexit as base sealers for polyP (0~3%) and para formaldehyde containing N2 as a control base were selected. Specimens (3$\times$4mm) of the sealers were prepared in a 37$^{\circ}C$ incubator for 3 and 10 days and their antibacterial activity against streptococci and black pigmented anaerobic rods was observed using an agar diffusion method. The result were as follows: 1. Among 3 day old root canal sealers. N2 as a positive control showed the strongest antibacterial effect. followed by AH26. Tubli Seal and. Apexit which barely showed antibacterial activity against the test bacteria. In contrast. 10 day old AH26 showed a greater antibacterial activity than 10 day old N2. 2. All sealer specimens showed a greater antibacterial activity against black pigmented anaerobic rods than streptococci. Three day old ones appeared to be more antibacterial than 10 day old ones except for Apexit. 3. As compared to N2, 3 day old AH26 demonstrated a similar antibacterial activity against black pig mented anaerobic rods but to a lesser extent to streptococci. Ten day old AH26 showed a greater antibacterial activity against black pigmented anaerobic rods than 10 day old N2. 4. As compared to AH26. Tubli Seal generally revealed a lower antibacterial activity but it showed a greater antibacterial activity aginst S. gordonii Challis. 5. Enhancement of antibacterial activity by polyP was more clearly observed when it was added to Ca(OH)$^{\circ}C$ based root canal sealers. Tubli Seal and N2. 6. The addition of polyP enhanced the antibacterial activity of 3 day old AH26 against S. gordonii G9B (16%) and Challis (29%), and P. gingivalis 2561 (24%) only. Moreover, polyP failed to increase antibacterial activity of 10 day old AH26 against the test strains but P. gingivalis A7A1 28(13%). 7. The addition of polyP increased the antibacterial effect of 3 day old Tubli Seal on several test bacteria including s. mutans GS 5 (50%). s. gordonii G9B (47%) and Challis (122%). and all the test strains of P. gingivalis (13~35%) except for 9 14K 1. The addition of polyP to 10 day old Tubli Seal increased antibacterial activity of the root canal sealer against most test strains. 8. 3 day old Apexit failed to show antibacterial activity. if any very little against S. mutans GS 5 and Pr. intermedia ATCC 49046. However. polyP increased its antibacterial activity by 50 and 69%, respectively. Increase of antibacterial activity of 10 day old Apexit by polyP was more clearly observed than that of 3 day old one.

  • PDF

Investigation of Synthesis and Antibacterial Properties of a Magnetically Reusable Fe3O4-ACCS-Ag Nanocomposite (재사용이 가능한 나노복합재료 Fe3O4-ACCS-Ag의 제조 및 항균 특성 평가)

  • Shim, Jaehong;Kim, Hea-Won;Kim, Jin-Won;Seo, Young-Seok;Oh, Sae-Gang;Cho, Min;Park, Junghee;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, Fe3O4-ACCS-Ag nanoparticles (NPs) were successfully synthesized using silica extracted from corn cob ash. The synthesized Fe3O4-ACCS-Ag NPs were characterized using X-ray diffraction (XRD), scanning electron microscopyenergy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR). In addition, the potential application of Fe3O4-ACCS-Ag NPs as an antibacterial material in water disinfection was investigated using Escherichia coli ATCC 8739 as model bacteria. The antibacterial activity of synthesized composite material showed 99.9% antibacterial effect within 20 min for the tested bacteria. From this experiment, the synthesized Fe3O4-ACCS-Ag nanocomposites also hold magnetic properties and could be easily recovered from the water solution for its reuse. The reused nanocomposites presented the decreasing antibacterial efficiencies with the reuse cycle but the composite used three times still killed 90% of bacteria in 20 min.

Antibacterial Properties of TiAgN and ZrAgN Thin Film Coated by Physical Vapor Deposition for Medical Applications

  • Kang, Byeong-Mo;Lim, Yeong-Seog;Jeong, Woon-Jo;Kang, Byung-Woo;Ahn, Ho-Geun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.275-278
    • /
    • 2014
  • We deposited TiAgN and ZrAgN nanocomposite coatings on pure Titanium specimens, by using arc ion plating (AIP) with single alloy targets. TiAg ZrAg alloy targets of 5 wt.%, 10 wt.% silver content by vacuum arc remelting (VAR), followed by homogenization for 2 hours at $1,100^{\circ}C$ in non-active Ar gas atmosphere and characterized these samples for morphology and chemical composition. We investigated the biocompatibility of TiAg and ZrAg alloys by examining the proliferation of L929 fibroblast cells by MTT test assay, after culturing the cells ($4{\times}10^4cells/cm^2$) for 24 hours; and exploring the antibacterial properties of thin films by culturing Streptococus Mutans (KCTC3065), using paper disk techniques. Our results showed no cytotoxic effects in any of the specimens, but the antibacterial effects against Streptococus Mutans appeared only in the 10 wt.% silver content specimens.

Dyeing Properties and the Antibacterial Activity of Mulberry Fiber/Cotton Blended Fabrics with Inonotus obliquus (차가버섯 추출염액을 이용한 닥섬유 혼방직물의 염색성과 항균효과)

  • Kim, Sung-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.3
    • /
    • pp.472-479
    • /
    • 2010
  • The dyeing properties of mulberry fiber/cotton blended fabric with Inonotus obliquus are studied through the investigation of the effects of dyeing conditions, such as the concentration of Inonotus obliquus extract colorants, dyeing temperature, time, and pH values on dye uptakes (K/S). In addition, the effects of mordant on the dye uptakes and antibacterial activities are investigated. The results are summarized as follows. The dye uptakes of dyed fabric increased gradually with an increase concentration of Inonotus obliquus extract colorants, the K/S value was the highest when the dyeing temperature was $60^{\circ}C$ for a duration of 60 minutes. As the pH value of the dyeing solution changed to more acidic, the dyeability of the, fabric was improved. The K/S value recorded the highest at pH 3. The antibacterial activities of dyed and unmordanted mulberry fiber/cotton blended fabric showed a high Staphylococcus aureus reduction rate.