Browse > Article
http://dx.doi.org/10.7857/JSGE.2015.20.3.025

Investigation of Synthesis and Antibacterial Properties of a Magnetically Reusable Fe3O4-ACCS-Ag Nanocomposite  

Shim, Jaehong (School of Natural Resources, University of Nebraska-Lincoln)
Kim, Hea-Won (Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University)
Kim, Jin-Won (Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University)
Seo, Young-Seok (Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University)
Oh, Sae-Gang (Mine Reclamation Corp.)
Cho, Min (Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University)
Park, Junghee (Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University)
Oh, Byung-Taek (Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University)
Publication Information
Journal of Soil and Groundwater Environment / v.20, no.3, 2015 , pp. 25-33 More about this Journal
Abstract
In this study, Fe3O4-ACCS-Ag nanoparticles (NPs) were successfully synthesized using silica extracted from corn cob ash. The synthesized Fe3O4-ACCS-Ag NPs were characterized using X-ray diffraction (XRD), scanning electron microscopyenergy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR). In addition, the potential application of Fe3O4-ACCS-Ag NPs as an antibacterial material in water disinfection was investigated using Escherichia coli ATCC 8739 as model bacteria. The antibacterial activity of synthesized composite material showed 99.9% antibacterial effect within 20 min for the tested bacteria. From this experiment, the synthesized Fe3O4-ACCS-Ag nanocomposites also hold magnetic properties and could be easily recovered from the water solution for its reuse. The reused nanocomposites presented the decreasing antibacterial efficiencies with the reuse cycle but the composite used three times still killed 90% of bacteria in 20 min.
Keywords
$Fe_3O_4$-ACCS-Ag nanoparticle; Antibacterial activity; Escherichia coli; Magnetic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang, W., Yao, Y., Sullivan, N., and Chen, Y., 2011a, Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics, Environ. Sci. Technol., 45(10), 4422-4428.   DOI
2 Zhang, X., Niu, H., Yan, J., and Cai, Y., 2011b, Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity, Coll. Surf. A: Physicochem. Eng. Asp., 375(1), 186-192.   DOI
3 Rai, M.K., Deshmukh, S.D., Ingle, A.P., and Gade, A.K., 2012, Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria, J. Appl. Microbiol., 112(5), 841-852.   DOI   ScienceOn
4 Sanpui, P., Murugadoss, A., Prasad, P.D., Ghosh, S.S., and Chattopadhyay, A., 2008, The antibacterial properties of a novel chitosan-Ag-nanoparticle composite, Int. J. Food Microbial., 124(2), 142-146.   DOI
5 Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., and Dash, D., 2007, Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology, 18(22), 1-9.
6 Yoon, K.Y., Hoon Byeon, J., Park, J.H., and Hwang, J., 2007, Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles, Sci. Total Environ., 373(2), 572-575.   DOI
7 Wang, J.X., Wen, L.X., Wang, Z.H., and Chen, J.F., 2006, Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects, Mater. Chem. Pphysic., 96(1), 90-97.   DOI
8 Wu, C.S. and Liao, H.T., 2011, Antibacterial activity and antistatic composites of polyester/Ag-SiO2 prepared by a sol-gel method, J. Appl. Polym. Sci., 121(4), 2193-2201.   DOI
9 Yanagisawa, N., Fujimoto, K., Nakashima, S., Kurata, Y., and Sanada, N., 1997, Micro FT-IR study of the hydration-layer during dissolution of silica glass, Geochim. Cosmochim. Acta, 61(6), 1165-1170.   DOI
10 Zhang, L., Yu, J.C., Yip, H.Y., Li, Q., Kwong, K.W., Xu, A.W., and Wong, P.K., 2003, Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities, Langmuir, 19(24), 10372-10380.   DOI
11 Kim, S.H., Lee, H.S., Ryu, D.S., Choi, S.J., and Lee, D.S., 2011, Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli, Kor. J. Microbiol. Biotechnol., 39(1), 77-85.
12 Landeen, L.K., Yahya, M.T., and Gerba, C.P., 1989, Efficacy of copper and silver ions and reduced levels of free chlorine in inactivation of Legionella pneumophila, Appl. Environ. Microbial., 55(12), 3045-3050.
13 Liria, C.W., Ungaro, V.A., Fernandes, R.M., Costa, N.J., Marana, S.R., Rossi, L.M., and Machini, M.T., 2014, Synthesis, properties, and application in peptide chemistry of a magnetically separable and reusable biocatalyst, J. Nanopart. Res., 16(11), 1-13.
14 Quang, D.V., Sarawade, P.B., Hilonga, A., Kim, J.K., Chai, Y.G., Kim, S.H., Ryu, J.Y., and Kim, H.T., 2011, Preparation of amino functionalized silica micro beads by dry method for supporting silver nanoparticles with antibacterial properties, Coll. Surf. A: Physicochem. Eng. Asp., 389(1), 118-126.   DOI
15 Liu, J., Lee, J.B., Kim, D.H., and Kim, Y., 2007, Preparation of high concentration of silver colloidal nanoparticles in layered laponite sol, Coll. Surf. A: Physicochem, Eng. Asp., 302(1), 276-279.   DOI   ScienceOn
16 Mpenyana-Monyatsi, L., Mthombeni, N.H., Onyango, M.S., and Momba, M.N., 2012, Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater, Int. J. Environ. Res. Pub. He., 9(1), 244-271.   DOI
17 Deng, Y.H., Wang, C.C., Hu, J.H., Yang, W.L., and Fu, S.K., 2005, Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach, Coll. Surf. A: Physicochem, Eng. Asp., 262(1), 87-93.   DOI   ScienceOn
18 Naik, B., Desai, V., Kowshik, M., Prasad, V.S., Fernando, G.F., and Ghosh, N.N., 2011, Synthesis of Ag/AgCl-mesoporous silica nanocomposites using a simple aqueous solution-based chemical method and a study of their antibacterial activity on E. coli, Particuology, 9(3), 243-247.   DOI
19 Chamakura, K., Perez-Ballestero, R., Luo, Z., Bashir, S., and Liu, J., 2011, Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants, Coll. Surf. B: Biointer., 84(1), 88-96.   DOI   ScienceOn
20 Cho, M., Chung, H.M., Choi, W.Y., and Yoon, J.Y., 2004, Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection, Wat. Res., 38, 1069-1077.   DOI
21 Jin, X., Li, M., Wang, J., Marambio-Jones, C., Peng, F., Huang, X., and Hoek, E.M., 2010, High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions, Environ. Sci. Tech., 44(19), 7321-7328.   DOI
22 Fan, Z., Senapati, D., Khan, S.A., Singh, A.K., Hamme, A., Yust, B., Sardar, D., and Ray, P.C., 2013, Popcorn-Shaped Magnetic Core-Plasmonic Shell Multifunctional Nanoparticles for the Targeted Magnetic Separation and Enrichment, Label-Free SERS Imaging, and Photothermal Destruction of Multidrug-Resistant Bacteria, Chem. Eur. J., 19(8), 2839-2847.   DOI
23 He, D., Ikeda-Ohno, A., Boland, D.D., and Waite, T.D., 2013, Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash, Environ. Sci. Technol., 47(10), 5276-5284.   DOI
24 Amarjargal, A., Tijing, L.D., Im, I.T., and Kim, C.S., 2013, Simultaneous preparation of Ag/Fe3O4 core-shell nanocomposites with enhanced magnetic moment and strong antibacterial and catalytic properties, Chem. Eng. J., 226, 243-254.   DOI   ScienceOn
25 Jeon, H.J., Yi, S.C., and Oh, S.G., 2003, Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method, Biomaterials, 24(27), 4921-4928.   DOI
26 Kalapathy, U., Proctor, A., and Shultz, J., 2000, A simple method for production of pure silica from rice hull ash, Bioresour. Technol., 73(3), 257-262.   DOI
27 Akhavan, O., 2009, Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation, J. Coll. Interf. Sci., 336(1), 117-124.   DOI
28 Chang, Q., He, H., and Ma, Z., 2008, Efficient disinfection of Escherichia coli in water by silver loaded alumina, J. Inorg. Biochem., 102(9), 1736-1742.   DOI