• Title/Summary/Keyword: Antibacterial agents

Search Result 378, Processing Time 0.024 seconds

A Study of the Antioxidant Activities and Whitening Activities of Areca semen Extracts as Cosmetic Ingredient (화장품 소재로서 빈랑자의 항산화 및 미백활성에 관한 효과)

  • Kang, Hee Cheol;Cha, Mi Yeon;Kim, Jae Young
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.3
    • /
    • pp.269-277
    • /
    • 2015
  • Herbal plant extracts are good resources to find functional compounds for cosmetic ingredient. In this study, the extract of Areca semen (A. semen) was studied for melanogenesis inhibition and antioxidant activity. The results showed that ethyl acetate fraction of A. semen contained phenolic contents, $301.35{\pm}0.88{\mu}g/mg$, and exhibited potent antioxidant activity with $IC_{50}$ value of $1.02{\pm}0.07{\mu}g/mg$. Further, FRAP value exhibited potent antioxidant activity with $9.07{\pm}0.36mM$. Disk diffusion assay was performed for antibacterial activity. Ethyl acetate fraction of A. semen showed antibacterial activity against Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) at $80{\mu}g/mL$, whereas it showed no significant antibacterial activity against Escherichia coli (E. coli). The results of cell viability indicated that ethyl acetate fraction did not show cytotoxicity to B16/F1 cells at $80{\mu}g/mL$ and showed significant cytotoxicity at $100{\mu}g/mL$ of concentration and showed inhibition of melanin synthesis inhibitory, $29.78{\pm}0.31%$ at $80{\mu}g/mL$. Furthermore, mRNA expressions of tyrosinase and MITF were decreased after treatment with ethyl acetate fraction in a dose-dependent manner. As a result, the ethyl acetate fraction of A. semen could be considered as potential as whitening agents.

Biogenic Synthesis of Metallic Nanoparticles and Their Antibacterial Applications (금속 나노입자의 생체 합성과 항균적 적용)

  • Patil, Maheshkumar Prakash;Kim, Jong-Oh;Seo, Yong Bae;Kang, Min-jae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.862-872
    • /
    • 2021
  • Recent studies on synthesis of metallic nanomaterials such as silver (Ag), gold (Au), platinum (Pt), cerium (Ce), zinc (Zn), and copper (Cu) nanoparticles (NPs) using plants and microbes are attracted researchers for their wide range of applications in the field of biomedical sciences. The plant contains abundant of bioactive contents such as flavonoids, alkaloids, saponins, steroids tannins and nutritionals components. Similarly, microbes produce bioactive metabolites, proteins and secretes valuable chemicals such as color pigments, antibiotics, and acids. Recently reported, biogenic synthesis of NPs in non-hazardous way and are promising candidates for biomedical applications such as antibacterial, antifungal, anti-cell proliferative and anti-plasmodia activity. All those activities are dose dependent, along with their shape and size also matters on potential of NPs. Microbes and plants are great source of metabolites, those useful in biomedical field, such metabolites or chemicals involved in synthesis of NPs in an ecofriendly way. NPs synthesized using microbes or plant materials are reveals more non-toxic, facile, and cost-effective compare to chemically synthesized NPs. In present review we are focusing on NPs synthesis using biological agents such as microbes (bacteria, fungi and algae) and plant, characterization using different techniques and their antibacterial applications on pathogenic Gram-positive and Gram-negative organisms.

Synthesis and In-vitro Activity of Some New Class of Thiazolidinone and Their Arylidene Derivatives

  • Seelam, Nareshvarma;Shrivastava, S.P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3996-4000
    • /
    • 2011
  • In an attempt to find a new class of anti microbial agents, a series of thiazolidinone and their 5-arylidene derivatives containing 4-(4-methyl benzamido)-benzoyl moiety were synthesized via the reaction of benzocaine with appropriate chemical reagents. These compounds were screened for their antibacterial activity against Gram-positive bacteria (Bacillus subtilis and Bacillus thuringiensis), Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and antifungal activity against Botrytis fabae, Fusarium oxysporan and Candida albicans. On the other hand the synthesized compounds were also screened for their anti tubercular activity. IR, $^1H$ NMR, $^{13}C$ NMR and MS spectral analyses established the structures of the newly synthesized compounds. The results revealed that some of these compounds have shown promising antimicrobial and anti tubercular activity in comparison with standard drugs.

Facile Synthesis of New Pyrazolopyrimidine Derivatives of Potential Biosignificant Interest

  • Aly, Aly A.;El-Karim, Iman A. Gad
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.781-786
    • /
    • 2011
  • An easy and efficient route for the synthesis of some imidazo[1,2-c]pyrazolo[4,3-e]pyrimidines 3-6, imidazo[1,2-c]pyrazolo[4,3-e]triazine 8, pyrazolo[4,3-e]triazolo[1,5-c]pyrimidines 12-15 and pyrazolo-[3',4':4,5]pyrimido[1,6-b]triazines 16, 17 was described through the reaction of readily available 5-aminopyrazole-4-carbonitrile 1 with different reagents. The in vitro antimicrobial activity of some synthesized compounds was examined. Most of the tested compounds proved to be active as antibacterial and antifungal agents.

Design, Characterization, and Antimicrobial Activity of a Novel Antimicrobial Peptide Derived from Bovine Lactophoricin

  • Kim, Ji-Sun;Jeong, Ji-Ho;Kim, Yongae
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.759-767
    • /
    • 2017
  • Lactophoricin (LPcin), which is a part of proteose peptone isolated from bovine milk, is a cationic amphipathic ${\alpha}-helical$ antimicrobial peptide. Its truncated variants and mutated analogs were designed and their antimicrobial activities were evaluated by using various assays, like broth dilution methods and disk diffusion methods as well as hemolysis assay. Three analogs, LPcin-C8 (LPcin-YK1), LPcin-T2&6W (LPcin-YK2), and LPcin-T2&6W-C8 (LPcin-YK3), which showed better antibiotic activities than LPcin, were selected. Their secondary structures were also characterized by using CD spectropolarimetry. These three analogs of LPcin could be used as an alternative source of powerful antibacterial agents.

A Study on the Determination of Residual Antibiotics and synthetic antibacterial agents in Meat(I) -Microbiological Assay- (식육중의 잔류 항생.항균제의 검정에 관한 연구(I) -생물학적 검정법-)

  • 류재천;송윤선;박종세;장준식;신보승언
    • Journal of Food Hygiene and Safety
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • 육류중에 잔류하는 항생물질 및 항균제를 검출하기 위해 본 실험에서는 3종의 균주 Bacillus subtilis ATCC 6633, Micrococcus luteus ATCC 9341, BAcillus cereus var. mycoides ATCC 11778을 사용하여 실험하였다. 시료의 clean-up은 항생·항균제의 물리화학적 성질을 고려하여 우선 McIlvaine buffer를 가하여 homogenize하고 hexane으로 defatting 시킨 후, chloroform으로 추출한 액과 Sep-Pak C18과 Bakerbond SPE carboxylic acid column에 흡착시킨 후 추출한 액을 각각 시험용액 A, B, C,로 하였다. 각 test solution을 paper disk를 사용하여 함균 배지에 올려놓고 overnight culture 후 inhibition pattern을 통해 여러 종류의 항생·항균제를 계통적으로 검출하였다. 본 실험에서 macrolide계와 tetracycline계 등은 0.1ppm 이하의 detection limit을 보였으며, penicillinrP는 0.001ppm이하의 높은 detection limit을 나타내므로서 시료중에 잔류하는 극미량까지도 검출할 수 있었다. 본 방법은 식육중의 잔류 항생·항균제를 동시에 간단하게 계통적으로 분류하는데 있어 좋은 방법이라고 생각되며 항생·항균제의 체계적인 1차 screening 수단으로서 유용한 방법이라 사료된다.

  • PDF

Synthesis and Biological Valutaion of New 5-Fluorobenzimidazole Antifungal Agents (새로운 5-Fluorobenzimidazole 항진균제의 합성과 생물학적 평가)

  • Ryu, Soung-Ryual
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.118-125
    • /
    • 2011
  • New type of 5-fluorobenzimidazole derivatives was synthesized through the reaction of 4-fluoro-5-(2,6-dimethylmorpholinyl)-2-aminoaniline with 5-nitro-2-furoic acid and 5-methoxy-3-chlorobenzothiophene-2-carboxylic acid in presence of PPA and treatment of $OH^-$. the resulting substituted 5-fluorobenzimidazole derivatives(6), (7) was characterized by high solubility in common polar organic solvents. We considered 5-fluorobenzimidazole derivatives were useful especially for antifungal drugs. These results are discussed from the viewpoints of the chemical and physical structures of the 5-fluorobenzimidazole derivatives.

Carrier-Mediated Tissue Distribution and Blood-Brain Barrier Transport of New Quinolones

  • Tsuji, Akira
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.57-63
    • /
    • 1997
  • Animal and clinical investigations have shown that fluoroquinolones, new quinolone antibacterial agents (NQs), are well absorbed across the intestinal tract, with a bioavailability of 60-90% after oral administration. Although some types of carrier-mediated intestinal transport mechanisms have been reported for enoxacin (ENX), ofloxacin (OFLX) and sparfloxacin (SPFX), recent results using a human intestinal epithelial cell line, Caco-2, indicated a passive or nonsaturable transport of SPFX, one of the most hydrophobic NQs. The mechanism underlying the intestinal absorption of NQs is still largely unknown. The distribution of NQs into peripheral tissues including erythrocytes is very rapid and their tissue-to-plasma concentration ratios (Kp) are considerably larger than those of inulin (an extracellular fluid space marker), in spite of almost complete ionization of NQs at the physiological pH. Our findings suggest that OFLX and lomefloxacin (LFLX) are taken up by rat erythrocytes via a transport system common to that of a water-soluble vitamin, nicotinic acid.

  • PDF