• Title/Summary/Keyword: Antibacterial LAB

Search Result 72, Processing Time 0.028 seconds

Comparison of In Vitro, Ex Vivo, and In Vivo Antibacterial Activity Test Methods for Hand Hygiene Products (손 위생 제품에 대한 in vitro, ex vivo, in vivo 항균 시험법 비교)

  • Daeun Lee;Hyeonju Yeo;Haeyoon Jeong
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.1
    • /
    • pp.35-43
    • /
    • 2024
  • Numerous methods have been applied to assess the antibacterial effectiveness of hand hygiene products. However, the different results obtained through various evaluation methods have complicated our understanding of the real efficacy of the products. Few studies have compared test methods for assessing the efficacy of hand hygiene products. In particular, reports on ex vivo pig skin testing are limited. This study aimed to compare and characterize the methodologies applied for evaluating hand hygiene products, involving in vitro, ex vivo, and in vivo approaches, applicable to both leave-on sanitizers and wash-off products. Our further aim was to enhance the reliability of ex vivo test protocols by identifying influential factors. We performed an in vitro method (EN1276) and an in vivo test (EN1499 and ASTM2755) with at least 20 participants, against Serratia marcescens or Escherichia coli and Staphylococcus aureus. For the ex vivo experiment, we used pig skin squares prepared in the same way as those used in the in vivo test method and determined the optimal treated sample volumes for sanitizers and the amount of water required to wash off the product. The hand sanitizers showed at least a 5-log reduction in bacterial load in the in vitro test, while they showed little antibacterial activity in the in vivo and ex vivo tests, particularly those with a low alcohol content. For the hand wash products, the in vitro test was limited because of bubble formation or the high viscosity of the products and it showed low antibacterial activity of less than a 1-log reduction against E. coli. In contrast, significantly higher log reductions were observed in ex vivo and in vivo tests, consistently demonstrating these results across the two methods. Our findings revealed that the ex vivo and in vivo tests reflect the two different antibacterial mechanisms of leave-on and wash-off products. Our proposed optimized ex vivo test was more rapid and more precise than the in vitro test to evaluate antibacterial results.

Screening and Characterization of Pro biotic Lactic Acid Bacteria Isolated from Korean Fermented Foods

  • Lim, Sung-Mee;Im, Dong-Soon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.178-186
    • /
    • 2009
  • To examine their potential as probiotics, acid and bile tolerance, antibiotics resistance, adhesion capacity to Caco-2 and HT-29, and antibacterial activity, of LAB isolated from Korean fermented foods such. as dongchimi, kimchi, Meju, and doenjang were assayed against foodborne pathogenic bacteria. DC 55, DC 136, DC 222, KC 21, KC 24, KC 34, KC 43, KC 117, MJ 54, MJ 301, SP 33, and SP 170 strains were resistant to acid and bile conditions. In particular, DC 55, DC 136, KC 24, KC 43, and MJ 301 strains were highly resistant to higher than 20 ${\mu}g/ml$ concentrations of vancomycin, streptomycin sulfate, or amoxicillin, whereas, DC 222, KC 21, KC 34, KC 117, MJ 54, and SP 33 strains were susceptible to lower than 2 ${\mu}g/ml$ concentrations of those antibiotics. The adhesion to HT-29 and Caco-2 cells varied with the strains tested in a strain-dependent manner. The highest level of adhesion was observed with DC 55, KC 21, KC 24, and MJ 301 strains, having higher than 50% of adhesion to HT-29 or Caco-2 cells. In addition, Staphylococcus aureus was the most sensitive to KC 21, showing an inhibition of about 70%, and the antibacterial activity of KC 21 against S. aureus resulted most likely from both organic acids and bacteriocin. Based on its phenotypic characteristics and utilization of various sugars, the KC 21 strain was identified as Lactobacillus plantarum.

Extraction and Characterization of Antibacterial Components from the Roots of Evening Primrose (Oenothera odorata Jacquin) (달맞이꽃(Oenothera odorata Jacquin) 뿌리에서 추훌한 황균성분의 특성)

  • Sin, Sung-Jin;Kwon, Soon-Kyung;Lee, Kweon-Haeng;Sung, Nack-Do;Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.21 no.1
    • /
    • pp.54-59
    • /
    • 1994
  • An antibacterial component was isolated from the roots of evening primrose(Oenothera odorata Jacquin). The component was purified by repeated preparative TLC of the chloroform-extract with solvent system of toluene(7):ethyl acetate(4):formic acid(O.8). NMR spectrum indicated that it is a steroid compound containing radical(-C=C-C=0) and aromatic structures. Its antibacterial activity against strains of the genus Streptococcus was relatively high, the MIC value was 50 acccording to the Hoechst Manual-345, as compared with the other genera such as Staphylococcus and Escherichia.

  • PDF

Inhibitory effect of bacteriocin-producing lactic acid bacteria against histamine-forming bacteria isolated from Myeolchi-jeot

  • Lim, Eun-Seo
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.10
    • /
    • pp.42.1-42.10
    • /
    • 2016
  • The objectives of this study were to identify the histamine-forming bacteria and bacteriocin- producing lactic acid bacteria (LAB) isolated from Myeolchi-jeot according to sequence analysis of the 16S rRNA gene, to evaluate the inhibitory effects of the bacteriocin on the growth and histamine accumulation of histamine-forming bacteria, and to assess the physico-chemical properties of the bacteriocin. Based on 16S rRNA gene sequences, histamine-forming bacteria were identified as Bacillus licheniformis MCH01, Serratia marcescens MCH02, Staphylococcus xylosus MCH03, Aeromonas hydrophila MCH04, and Morganella morganii MCH05. The five LAB strains identified as Pediococcus acidilactici MCL11, Leuconostoc mesenteroides MCL12, Enterococcus faecium MCL13, Lactobacillus sakei MCL14, and Lactobacillus acidophilus MCL15 were found to produce an antibacterial compound with inhibitory activity against the tested histamine-producing bacteria. The inhibitory activity of these bacteriocins obtained from the five LAB remained stable after incubation at pH 4.0-8.0 and heating for 10 min at $80^{\circ}C$; however, the bacteriocin activity was destroyed after treatment with papain, pepsin, proteinase K, ${\alpha}$-chymotrypsin, or trypsin. Meanwhile, these bacteriocins produced by the tested LAB strains also exhibited histamine-degradation ability. Therefore, these antimicrobial substances may play a role in inhibiting histamine formation in the fermented fish products and preventing seafood-related food-borne disease caused by bacterially generated histamine.

Biological and Functional Characteristics of Lactic Acid Bacteria in Different Kimchi (김치 종류에 따른 유산균의 생물학적 및 기능적 특성)

  • Ko, Kang Hee;Liu, Wenli;Lee, Hyun Hee;Yin, Jie;Kim, In Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.1
    • /
    • pp.89-95
    • /
    • 2013
  • Biological and functional characteristics of lactic acid bacteria (LAB) were investigated in mustard stem/leaf kimchi (MK), cabbage kimchi (CK), young radish kimchi (YRK), and cubed radish kimchi (CRK). LAB of young radish kimchi were mainly composed of bacilli in contrast to the other kimchi. 89.2% LAB isolated from all kimchi harbored plasmids. However, LAB had an average of $4.1{\pm}0.5$ plasmid bands in YRK, more than MK, CK, and CRK. Exopolysaccharides were produced by 10.9~11.1% of LAB, and were especially by LAB isolated from radish kimchi. A significant percentage of LAB (69.5%) had antibacterial activity against one sensitive strain or more. LAB from CK, YRK and CRK had antimicrobial activities against Bacillus sp., Listeria monocytogenes, and Salmonella Typhimurium, while the LAB from MK had activities against Vibrio parahaemolyticus higher than those from the other kimchi. In YRK and CRK, acid-tolerant LAB were twice as prevalent as those in MK and CK. Bile-tolerant LAB isolated from CRK were more prevalent than other kimchi. When $10^8$ CFU of LAB were added to Caco-2 cells, 12.1% of LAB isolated from all kimchi showed similar adherent activity to Lactobacillus rhamnosus GG. LAB of MK particularly adhered to Caco-2 cells, 2.0~4.1 fold higher than LAB in the other kimchi. From these results, biological and functional characteristics of LAB varied according to the type of kimchi and LAB existing in kimchi were limited to their respective species.

Studies on the Enhanced Physiological Activities of Mixed Lactic Acid Bacteria Isolated from Fermented Watery Kimchi, Dongchimi (발효된 물김치인 동치미에서 분리한 혼합 젖산균의 생리활성 증진에 대한 연구)

  • Choi, Moon-Seop;Kim, Dong-Min;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.30 no.5
    • /
    • pp.245-252
    • /
    • 2015
  • The aim of this study was to investigate the efficacy of enhanced physiological activities in cultures isolated from Korean fermented watery Kimchi, Dongchimi, of single lactic acid bacteria (LAB), and when these three are mixed LAB as probiotics. Using the BIOLOG system and 16S rRNA sequencing, the isolates were characterized, and identified and assigned to Leuconostoc mesenteroides DK-3, Leuconostoc dextranicum DK-6, and Lactobacillus curvatus DK-13, respectively. Growth rate and pH changes, production of organic acids as metabolites, and physiological activities of the single and mixed LAB cultures, were monitored and compared. In mixed LAB cultures after 72 h of incubation, the maximum concentrations of lactic acid and acetic acid were approximately 340.5 mM and 191.9 mM, respectively, and pH changed from 7.00 to 3.62. Mixed LAB cultures were able to eliminate 96.3% of nitrite. Activities of antioxidant and ${\beta}$-galactosidase were 60.3% and 16.8 units/mg, respectively. Significant antibacterial activity of the concentrated supernatants was demonstrated against several food-poisoning bacteria. Physiological activities obtained from the mixed LAB cultures have been shown to be considerably higher than those of single LAB cultures. In conclusion, these studies demonstrate that compared to the single cultures, all physiological activities in mixed LAB cultures are significantly enhanced.

A novel combination of sodium metabisulfite and a chemical mixture based on sodium benzoate, potassium sorbate, and sodium nitrite for aerobic preservation of fruit and vegetable discards and lactic acid fermentation in a total mixed ration for ruminants

  • Ahmadi, Farhad;Lee, Won Hee;Kwak, Wan Sup
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1479-1490
    • /
    • 2021
  • Objective: Our recent findings confirmed the effectiveness of sodium metabisulfite (SMB) in controlling the growth of undesirable microorganisms in fruit and vegetable discards (FVD); however, lactic acid bacteria (LAB) are susceptible to its antibacterial effects. Two series of experiments were conducted to enable the survivability of LAB during silage fermentation of a total mixed ration (TMR) containing SMB-treated FVD. Methods: In Exp. 1, the objective was to isolate a strain of LAB tolerable to the toxic effect of SMB. In Exp. 2, the SMB load was minimized through its partial replacement with a chemical mixture (CM) based on sodium benzoate (57%), potassium sorbate (29%), and sodium nitrite (14%). FVD was treated with SMB + CM (2 g each/kg biomass) and added to the TMR at varying levels (0%, 10%, or 20%), with or without KU18 inoculation. Results: The KU18 was screened as a presumptive LAB strain showing superior tolerance to SMB in broth medium, and was identified at the molecular level using 16S rRNA gene sequence analysis as Lactobacillus plantarum. Inoculation of KU18 in TMR containing SMB was not successful for the LAB development, biomass acidification, and organoleptic properties of the resultant silage. In Exp. 2, based on the effectiveness and economic considerations, an equal proportion of SMB and CM (2 g each/kg FVD) was selected as the optimal loads for the subsequent silage fermentation experiment. Slight differences were determined in LAB development, biomass acidification, and sensorial characteristics among the experimental silages, suggesting the low toxicity of the preservatives on LAB growth. Conclusion: Although KU18 strain was not able to efficiently develop in silage mass containing SMB-treated FVD, the partial substitution of SMB load with the CM effectively alleviated the toxic effect of SMB and allowed LAB development during the fermentation of SMB + CM-treated FVD in TMR.

Nitroso-hemoglobin Increased the Color Stability and Inhibited the Pathogenic Bacteria in a Minced Beef Model: A Combined Low-field NMR Study

  • Hammad, HHM;Ma, Meihu;Jin, Guofeng;Jin, Yongguo;Khalifa, Ibrahim;Zeng, Qi;Liu, Yuanyuan
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.704-724
    • /
    • 2019
  • This study mainly investigated the improvement effect of nitroso-hemoglobin (NO-Hb) and four lactic acid bacteria (LAB) (Streptococcus thermophiles, Lactobacillus bulgaricus, Lactobacillus casei, and Montessori enterococcus) on the color and microbiological qualities of raw beef. Three strains of Escherichia coli, Staphylococcus, Salmonella, and Pseudomonas were used as pathogenic bacteria. The results showed that both NO-Hb and LAB could enhance the color stability and scavenged the spoilage bacteria in a minced beef model. But the improvement effect of NO-Hb was more significant than LAB. This suggested that NO-Hb, as a novel ingredient, could be used as a promising substitute for nitrite in meat products to improve the color and safety of meat products. In addition, low field (LF)-NMR method has been established to be practicable to identify changes in the relaxation times of water and fat caused by different type of bacteria and the storage periods. The number of relaxation components in minced beef was affected by bacteria and increase of the storage period.

Water-soluble microencapsulation using gum Arabic and skim milk enhances viability and efficacy of Pediococcus acidilactici probiotic strains for application in broiler chickens

  • Ratchnida Kamwa;Benjamas Khurajog;Nongnuj Muangsin;Pawiya Pupa;David J Hampson;Nuvee Prapasarakul
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1440-1451
    • /
    • 2024
  • Objective: This study aimed to develop and evaluate the effectiveness of a water-soluble microencapsulation method for probiotic strains using gum Arabic (GA) and skim milk (SKM) over a three-month storage period following processing. Methods: Four strains of Pediococcus acidilactici (BYF26, BYF20, BF9, and BF14) that were typical lactic acid bacteria (LAB) isolated from the chicken gut were mixed with different ratios of GA and SKM as coating agents before spray drying at an inlet temperature 140℃. After processing, the survivability and probiotic qualities of the strains were assessed from two weeks to three months of storage at varied temperatures, and de-encapsulation was performed to confirm the soluble properties. Finally, the antibacterial activity of the probiotics was assessed under simulated gastrointestinal conditions. Results: As shown by scanning electron microscopy, spray-drying produced a spherical, white-yellow powder. The encapsulation efficacy (percent) was greatest for a coating containing a combination of 30% gum Arabic: 30% skim milk (w/v) (GA:SKM30) compared to lower concentrations of the two ingredients (p<0.05). Coating with GA:SKM30 (w/v) significantly enhanced (p<0.05) BYF26 survival under simulated gastrointestinal conditions (pH 2.5 to 3) and maintained higher survival rates compared to non-encapsulated cells under an artificial intestinal juices condition of pH 6. De-encapsulation tests indicated that the encapsulated powder dissolved in water while keeping viable cell counts within the effective range of 106 for 6 hours. In addition, following three months storage at 4℃, microencapsulation of BYF26 in GA:SKM30 maintained both the number of viable cells (p<0.05) and the preparation's antibacterial efficacy against pathogenic bacteria, specifically strains of Salmonella. Conclusion: Our prototype water-soluble probiotic microencapsulation GA:SKM30 effectively maintains LAB characteristics and survival rates, demonstrating its potential for use in preserving probiotic strains that can be used in chickens and potentially in other livestock.

A Study on the Use of Human Antibacterial Peptide LL-37-derived FK-13 as a Cosmetic Preservative (인간 항균펩타이드인 LL-37 유래의 FK-13의 화장품보존제로 활용에 대한 연구)

  • Yun, Hyo-Suk;Choe, Yong-Joon;Yang, Jae-Chan;Min, Hye-Jung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1568-1576
    • /
    • 2021
  • Here, we conducted the study on the possibility of using FK-13, a short analog of human-derived antibacterial peptide LL-37, as a cosmetic preservative to discover a natural cosmetic preservative that is safe for human body. For the purpose, FK-13 composed of 13 amino acids was synthesized by solid-phase peptide synthesis, and purified using reversed phase-high performance liquid chromatography (RP-HPLC). The purity and molecular weight were confirmed by liquid chromatography-mass spectrometry (LC-MS) analysis. FK-13 showed high antimicrobial activity on the three gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, and Staphylococcus epidermidis), the three gram-negative bacteria (Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa), and also even the fungus Candida glabrata. FK-13 had a broad spectrum of antibacterial activity, showing a suitability as a cosmetic preservative. In addition, FK-13 showed high thermostability and higher antibacterial activity in a comparative test with existing natural herbal cosmetic and chemical preservatives. Therefore, as FK-13 is a safe material and has high antibacterial activity at a low concentration, it is likely to be applied as a peptide natural cosmetic preservative that can replace existing chemical preservatives.