• 제목/요약/키워드: Anti-vibration design

검색결과 116건 처리시간 0.026초

가정용 DLP 프로젝터의 소음 저감에 관한 연구 (Study on Noise Reduction of DLP Front Home Theater Projector)

  • 장동섭;박철민;박대경
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.861-867
    • /
    • 2004
  • For the evaluation of acoustic noise of a DLP projector, vibration and sound characteristics of a DLP projector were studied. The acoustic noise of DLP projector could be classified into three categories, that is, the direct noise from a body of rotation, the air-bone noise generated from turbulence or vortex occurred during cooling process and the structural born noise produced by vibrating elements. Cooling fans and color filter wheel which rotates at 9000 rpm are main causes of acoustic noise induced in DLP projector. Since the structure of an optical module in a DLP projector can be excited by the excessive vibration of a color filter wheel, the structural design for anti-vibration should be considered. To make a reduction of overall acoustic noise, the anti-vibration design and the enclosing structure have been studied and applied to a color filter wheel.

고발사율 대공포 발사에 따른 체계자세 연구 (The System Position from High Firing Rate of Anti-Aircraft Gun system)

  • 황부일;이부환;김치환
    • 대한기계학회논문집A
    • /
    • 제39권6호
    • /
    • pp.611-615
    • /
    • 2015
  • 비행기 방어용 대공포는 저고도 방어체계로 사용되고 있으며, 방어능력 극대화를 위해 대부분 고발사율 대공포를 두개 이상 탑재하여 교전 시 명중률을 높이고 있다. 고 발사율 대공포의 경우, 포열진동 및 탄의 불균형 분산은 정확한 조준사격 및 명중률에 아주 결정적인 영향을 미치게 된다. 따라서 사격 진동 및 충격량을 감소하는 구조는 대공포 체계에서는 주요 설계 대상이다. 본 연구에서는 차량의 현가장치 특성에 따라 고발사율 대공포 체계에서 발사시스템의 진동충격으로부터 차단하는 능력을 향상시키고, Recurdyn 과 Adams 를 이용한 동적 거동해석과 실 사격 시험결과를 비교하여 명중률에 영향을 미치는 현가 형태, 위치 및 수량에 따른 체계 자세 흔들림을 예측하였다. 본 연구를 통하여 대공포에 적합한 현가장치와 포 스프링 등과 같은 구성품을 선정할 수 있는 기초연구를 수행하였다.

압축하중을 받는 방진고무의 동특성 해석 및 실험 (Analysis and Experiment of the Dynamic Characteristics of Rubber Materials for Anti-Vibration under Compression)

  • 김국원;임종락;한용희;손희기;안태길
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.602-607
    • /
    • 1998
  • Rubber materials are extensively used in various machine design application, mainly for vibration/shock/noise control devices. Over the years an enormous effort has been put into developing procedures to provide properties of rubber material for design function. However, there are still a lot of difficulties in the understanding of dynamic characteristics of the rubber components in compression. In this paper, the dynamic characteristics of rubber materials for anti-vibration under compression were investigated. Dynamic and static tests for rubber material with 3 different hardness were performed. In dynamic tests, non-resonance method, impedance method, was used to obtain the complex modulus (storage modulus and loss factor) and the effects of static pre-strain on the dynamic characteristics were investigated. Also, a relation equation between linear dynamic and nonlinear static behavior of rubber material was discussed and its usefulness to predict their combined effects was investigated.

  • PDF

트랙터 캐빈의 진동저감을 위한 방진고무의 형상최적설계 (Shape Optimal Design of Anti-Vibration Rubber Assembly to Reduce the Vibration of a Tractor Cabin)

  • 최효준;이상훈
    • 한국산학기술학회논문지
    • /
    • 제19권4호
    • /
    • pp.657-663
    • /
    • 2018
  • 본 연구에서는 농업용 트랙터에 조립식으로 결합되는 캐빈에 사용되는 방진고무의 진동절연성능을 향상시키기 위하여 형상최적설계를 수행하였다. 초탄성거동을 보이는 고무의 물성을 평가하기 위하여 일축 및 이축 인장시험을 수행하였고 이를 이용하여 유한요소해석에 입력 가능한 재료 모델을 도출하였다. 실제 트랙터의 운전 상태에서 진동을 측정하여 방진고무로 전달되는 입력 가진 및 이로 인한 캐빈 프레임의 응답을 정량화하였다. 비선형 거동을 보이는 방진고무의 특성을 반영하기 위해 정해석을 이용하여 방진고무의 하중-변위 곡선을 도출하였다. 이로부터 특정 하중 혹은 변위가 가해진 상태에서 방진고무의 강성을 계산할 수 있었으며 이를 캐빈의 조화가진해석에 사용하였다. 해석결과와 시험 결과의 비교를 통하여 해석모델 및 기법의 타당성을 검증하였다. 방진고무의 형상설계를 위하여 다구찌의 인자설계법이 사용되었으며 이를 통하여 강성이 최소화된 방진고무의 형상을 찾을 수 있었다. 방진고무의 최적 형상을 고려하여 조화가진해석을 수행한 결과 초기설계 대비 35 % 이상 개선된 진동저감효과를 확인할 수 있었다.

슬림형 광 디스크 드라이브의 축방향 진동에 대한 실험적 해석 (Experimental Analysis of Axial Vibration in Slim-type Optical Disc Drive)

  • 박대경;전규찬;이성진;장동섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.694-699
    • /
    • 2002
  • As the demand for slim laptops requires ion'-height optical disc drives, vibration problems of optical disc drives are of great concern. Additionally, with the decrease of a track width and a depth of focus in high density drives, studies on vibration resonance between mechanical parts become more important. From the vibration point of view, the performance of optical disc drives is closely related with the relative displacement between a disc and an objective lens which is controlled by servo mechanism. In other words, to read and write data properly, the relative displacement between an optical disc and an objective lens should be within a certain limit. The relative displacement is dependent on not only an anti-vibration mechanism design but also servo control capability. Good servo controls can make compensation for poor mechanisms, and vice versa. In a usual development process, robustness of the anti-vibration mechanism is always verified with the servo control of an objective lens. Engineers partially modify servo gain margin in case of a data reading error. This modification cannot correct the data reading error occasionally and the mechanism should be redesigned more robustly. Therefore it is necessary to verify a mechanism with respect to the possible servo gain plot. In this study we propose the experimental verification method far anti-vibration mechanism with respect to the existing servo gain plot. This method verifies axial vibration characteristics of optical disc drives on the basis of transmissibility. Using this method, we verified our mechanism and modified the mechanism for better anti-vibration characteristics.

  • PDF

슬림형 광 디스크 드라이브의 축방향 진동에 대한 실험적 해석 (Experimental Analysis of Axial Vibration in Slim-type Optical Disc Drive)

  • 박대경;전규찬;이성진;장동섭
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.833-839
    • /
    • 2002
  • As the demand for slim laptops requires low-height optical disc drives, vibration problems of optical disc drives are of great concern. Additionally, with the decrease of a track width and a depth of focus in high density drives, studies on vibration resonance between mechanical parts become more important. From the vibration point of view, the performance of optical disc drives is closely related with the relative displacement between a disc and an objective lens which is controlled by servo mechanism. In other words, to read and write data properly, the relative displacement between an optical disc and an objective lens should be within a certain limit. The relative displacement is dependent on not only an anti-vibration mechanism design but also servo control capability. Good servo controls can make compensation for poor mechanisms, and vice versa. In a usual development process, robustness of the anti-vibration mechanism is always verified with the servo control of an objective lens. Engineers partially modify servo gain margin in case of a data reading error. This modification cannot correct the data reading error occasionally and the mechanism should be redesigned more robustly. Therefore it is necessary to verify a mechanism with respect to the possible servo gain plot. In this study we propose the experimental verification method for anti-vibration mechanism with respect to the existing servo gain plot. Thismethod verifies axial vibration characteristics of optical disc drives on the basis of transmissibility. Using this method, we verified our mechanism and modified the mechanism for better anti-vibration characteristics.

수치해석을 이용한 함정용 장비 받침대의 기계적 임피던스 및 전달 진동 분석 (Numerical Analysis of the Mechanical Impedance and Transmitted Vibration of the Foundation for the Equipment in a Naval Vessel)

  • 한형석;손윤준
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.462-467
    • /
    • 2009
  • Reduction of the structure-borne noise of the naval vessel is very important in order to reduce the underwater radiated noise of it. One of the important factors to reduce the structure-borne noise of the installed machine in a ship is the design of the foundation having sufficiently high mechanical impedance. In this paper, the mechanical impedance of the foundation for the fan-coil unit in a naval vessel is evaluated numerically according to variation of the thickness of the foundation. And also, the forced vibration analysis is conducted considering the dynamic property of the anti-vibration mount. Through the analysis results, it can be known that the dynamic property of the anti-vibration mount should be considered when the minimum level of the mechanical impedance of the foundation is set.

제진 강판의 블랭킹 가공 특성에 관한 연구 (A Study on the Blanking Characteristic of Anti- Vibration Sheet Metal)

  • 이광복;이용길;김종호
    • 소성∙가공
    • /
    • 제12권8호
    • /
    • pp.724-729
    • /
    • 2003
  • In order to study the shearing characteristic of anti-vibration sheet metal which is used to reduce vibration noise, a blanking die was manufactured to blank a workpiece. The variables employed in this study were clearance, type of stripper plate, position of the rubber layer and type of the die design. These variables were used to study the effects on burr height, blank diameter and camber height. In the case of burr height from experimental investigation, the push-back die, combined with a movable stripper plate, showed greater burr height. The rubber-top position of a workpiece resulted in better qualities regardless of working variables. In the comparison of diameter measurement, the use of the push-back die with a fixed stripper plate, with a 4.5% clearance, showed better accuracy. For comparing camber height, the push-back die resulted in less cambering than the drop-through die. Also, the larger the clearance, the greater was the camber height. Considering experimental results, the shearing of anti-vibrational sheet metal is best achieved when the rubber layer is laying on the top, blanked with a fixed stripper plate in a push-back die, with a 4.5% clearance.

2,600 TEU Container Vessel 의 Fresh Water Tank 구조손상 사례 고찰 (Consideration of Structural Damage of Fresh Water Tank for 2,600 TEU Container Vessel)

  • 신성광;안형준;최의걸;고명섭;임효관
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2005년도 특별논문집
    • /
    • pp.216-221
    • /
    • 2005
  • Many tanks such as a fresh water tank, an aft peak tank and oil tanks are arranged in the engine room and aft part areas of the ship. By added mass effect of the fluid inside the tanks, the natural frequency will be changed according to filling height of the tank. For this reason, there is possibility of occurrence of excessive vibration by resonance between natural frequencies of local structure and excitation frequencies of the propeller or main engine. Therefore, calculation of natural frequencies is required for structure for many types of tank which are contacting with water or oil to consider added mass effect for anti-resonance design at design stage. In this study, a case of structure damage on the fresh water tank for 2600 TEU container vessel is introduced. In addition, natural frequency analysis and vibration measurement have been performed to investigate vibration characteristics for excessive vibration control.

  • PDF