• 제목/요약/키워드: Anti-tumor therapy

검색결과 304건 처리시간 0.024초

Anti-tumor Immunity Induced by Tumor Cells Expressing a Membrane-bound Form of IL-2 and SDF-1

  • Choi, Jin-Wha;Lim, Ho-Yong;Chang, Mi-Ra;Cheon, Ji-Yeon;Kim, Young-Sang
    • Animal cells and systems
    • /
    • 제12권4호
    • /
    • pp.193-201
    • /
    • 2008
  • The eventual goal of tumor immunotherapy is to develop a vaccine inducing a specific anti-tumor immunity. Cytokine gene therapy is an effective way at least in animal models, but limited efficacy and various side effects obstruct clinical applications. In this study, we developed a tumor vaccine expressing a membrane-bound form of IL-2(mbIL-2) and SDF-1 in B16F10 melanoma cells. The tumor clones expressing mbIL-2 showed reduced tumorigenicity, and additional expression of SDF-1 to mbIL-2 expressing tumor cells caused more severe reduction in tumorigenicity. However, expression of the SDF-1 alone did not affect on the tumorigenicity, probably because of limited production of SDF-1 in the SDF-1 transfected clones. When the mice once rejected mbIL-2/SDF-1 expressing tumor clone were re-challenged with wild type B16F10 tumor cells, all of the mice survived. This result suggests that mbIL-2/SDF-1 tumor clone is effective in inducing systemic anti-tumor immunity against wild type B16 melanoma. Furthermore, culture supernatant of tumor clones expressing SDF-1 induced lymphocyte migration in vitro. These results, all together, suggest that expression of mbIL-2 and SDF-1 in tumor cells enhances anti-tumor immune responses through different roles; the secreted SDF-1 may function as a chemoattractant to recruit immune cells to tumor vaccine injection site, and the mbIL-2 on tumor cells may provide costimulatory signal for CTL activation in physical contacts.

Long-Term Efficacy of Anti-Tumor Necrosis Factor Agents in Pediatric Luminal Crohn's Disease: A Systematic Review of Real-World Evidence Studies

  • Rheenen, Hanna van;Rheenen, Patrick Ferry van
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제23권2호
    • /
    • pp.121-131
    • /
    • 2020
  • Purpose: To determine the long-term efficacy of the anti-tumor necrosis factor (TNF) agents, infliximab (IFX) and adalimumab (ADA), in pediatric luminal Crohn's disease (CD) by performing a systematic literature review. Methods: An electronic search was performed in Medline, Embase, and the Cochrane Library from inception to September 26, 2019. Eligible studies were cohort studies with observation periods that exceeded 1 year. Studies that reported time-to-event analyses were included. Events were defined as discontinuation of anti-TNF therapy for secondary loss of response. We extracted the probabilities of continuing anti-TNF therapy 1, 2, and 3 years after initiation. Results: In total, 2,464 papers were screened, 94 were selected for full text review, and 13 studies (11 on IFX, 2 on ADA) met our eligibility criteria for inclusion. After 1 year, 83-97% of patients were still receiving IFX therapy. After 2 and 3 years the probability of continuing IFX therapy decreased to 67-91% and 61-85%, respectively. In total, 5 of the 11 studies subgrouped by concomitant medication consistently showed that the probabilities of continuing IFX therapy in patients with prolonged immunomodulator use were higher than those in patients on IFX monotherapy. Conclusion: This review of real-world evidence studies confirms the long-term therapeutic benefit of IFX therapy in diverse cohorts of children with luminal CD. Moreover, it supports the view that combination therapy with an immunomodulator prolongs the durability of IFX therapy in patients who previously failed to recover following first-line therapy. The limited number of time-to-event studies in patients on ADA prevented us from drawing definite conclusions about its long-term efficacy.

Improving Combination Cancer Therapy by Acetaminophen and Romidepsin in Non-small Cell Lung Cancer Cells

  • Lee, Seong-Min;Park, James S.;Kim, Keun-Sik
    • 대한의생명과학회지
    • /
    • 제25권4호
    • /
    • pp.293-301
    • /
    • 2019
  • Combination chemotherapy is more effective than mono-chemotherapy and is widely used in clinical practice for enhanced cancer treatment. In this study, we investigated the potential synergistic effects of acetaminophen, a common component in many cold medicines, and romidepsin, a histone deacetylase (HDAC) inhibitor, in the A549 non-small cell lung cancer (NSCLC) cell line. The combination of acetaminophen and romidepsin also exerted significant cytotoxicity and apoptosis induced by activation of caspase-3 on tumor cells in vitro. Moreover, combination therapy significantly induced increased production of chemokines that stimulate migration of activated T-cells into tumor cells. This mechanism can lead to active T-cell mediated anti-tumor immunity in addition to the direct cytotoxic chemotherapeutic effect. Activated T-cells led to enhanced cytotoxicity in drug-treated A549 cells through interaction with tumor cells. These results suggested that the interaction between the two drugs is synergistic and significant. In conclusion, our data showed that the use of romidepsin and low concentrations acetaminophen could induce effective anti-tumor effects via enhanced tumor immune and direct cytotoxic chemotherapeutic responses. The combination of acetaminophen with romidepsin should be considered as a promising strategy for the treatment of lung cancer.

Tumor bioenergetics: An emerging avenue for cancer metabolism targeted therapy

  • Kee, Hyun Jung;Cheong, Jae-Ho
    • BMB Reports
    • /
    • 제47권3호
    • /
    • pp.158-166
    • /
    • 2014
  • Cell proliferation is a delicately regulated process that couples growth signals and metabolic demands to produce daughter cells. Interestingly, the proliferation of tumor cells immensely depends on glycolysis, the Warburg effect, to ensure a sufficient amount of metabolic flux and bioenergetics for macromolecule synthesis and cell division. This unique metabolic derangement would provide an opportunity for developing cancer therapeutic strategy, particularly when other diverse anti-cancer treatments have been proved ineffective in achieving durable response, largely due to the emergence of resistance. Recent advances in deeper understanding of cancer metabolism usher in new horizons of the next generation strategy for cancer therapy. Here, we discuss the focused review of cancer energy metabolism, and the therapeutic exploitation of glycolysis and OXPHOS as a novel anti-cancer strategy, with particular emphasis on the promise of this approach, among other cancer metabolism targeted therapies that reveal unexpected complexity and context-dependent metabolic adaptability, complicating the development of effective strategies.

Targeted Polymeric Gene Delivery for Anti-angiogenic Tumor Therapy

  • Kim, Won-Jong;Kim, Sung-Wan
    • Macromolecular Research
    • /
    • 제15권2호
    • /
    • pp.100-108
    • /
    • 2007
  • Gene therapy has become a promising strategy for the treatment of genetically based diseases, such as cancer, which are currently considered incurable. A major obstacle in the field of cancer gene therapy is the development of a safe and efficient delivery system for therapeutic gene transfer. Non-viral vectors have attracted great interest, as they are simple to prepare, stable, easy to modify and relatively safe compared to viral vectors. In this review, an insight into the strategies developed for polyethylenimine (PEI)-based non-viral vectors has been provide, including improvement of the polyplex properties by incorporating hydrophilic spacer, poly(ethylene glycol) (PEG). Moreover, this review will summarize the strategies for the tumor targeting. Specifically, a targeted polymeric gene delivery system, PEI-g-PEG-RGD, will be introduced as an efficient gene delivery vector for tumor therapy, including its functional analysis both in vitro and in vivo.

Biological Therapy for Inflammatory Bowel Disease in Children

  • Na, So-Young;Shim, Jung-Ok
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제15권1호
    • /
    • pp.13-18
    • /
    • 2012
  • The pathogenesis of inflammatory bowel diseases is not very well understood; it is currently thought to be caused by the interaction between genetic factors, environmental factors, intestinal microbes, and immune factors. Biological agents such as anti-tumor necrosis factor (anti-TNF) are widely being used as therapeutic agents. Infliximab, a chimeric monoclonal IgG1 antibody against tumor necrosis factor, has been demonstrated to have an effect in the induction and maintenance of remission in Crohn's disease in children. The effects of biological agents, typified by anti-TNFs, in inflammatory bowel disease in children; the recent concern on the administration of biological agents in combination with immunomodulators; and 'Top-down' therapy are some of the topics covered in this review.

항암제독탕가제조와 항암양제방에 대한 비교연구 (Comparison Study of the Anti-tumor Effects of Hangamjedoktang(Kangaizhidu-tang) with Holotrkhia and Hangamyagjaebang(Kangaiyaocai-fang))

  • 오중환;박종형;한양희;김동우;전찬용;백은기;홍의실;한지완;임영남
    • 대한한의학회지
    • /
    • 제24권3호
    • /
    • pp.138-144
    • /
    • 2003
  • Objective : Though modern medicine has made various studies in cancer treatment, the results of the treatments are not satisfactory. Considering this, Oriental medicine can be a breakthrough in treatment of cancer, and therefore, its constant research eagerly needed. According to preceding studies, Hangamjedoktang (Kangaizhidu-tang) with Hagocho appeared to be statistically significant against cancer, and therefore to seek a better medication for cancer, Holotrichia which seemed to be effective against cancer was added to the formula, and herbs which showed an anti-tumor effect in preceding studies composed Hangamyagjaebang. The efficacy of both Hangamjedoktang with Holotrichia (HJJ) and Hangamyagjaebang (Kangaiyaocaijang) (HM) was compared. Methods : To examine the anti-cancer effect of HJJ and HM, inhibitory effect on solid tumor growth in mice induced by Sarcoma-180 (s-180), change of body and organ weight in tumor bearing mice and the activity of machrophages and lymphocytes in the spleen were examined. Results : 1. In the HJJ and HM treated groups, tumor growth was markedly decreased. 2. HJJ and HM increased the activity of ALP which is produced from the splenocytes transplanted with S-180. 3. HJJ and HM increased the ACP activity of the macrophages of the mice transplanted with S-180. Conclusion : These results suggest that HJJ and HM are good candidates for new drugs for cancer therapy.

  • PDF

Enriching CCL3 in the Tumor Microenvironment Facilitates T cell Responses and Improves the Efficacy of Anti-PD-1 Therapy

  • Tae Gun Kang;Hyo Jin Park;Jihyun Moon;June Hyung Lee;Sang-Jun Ha
    • IMMUNE NETWORK
    • /
    • 제21권3호
    • /
    • pp.23.1-23.16
    • /
    • 2021
  • Chemokines are key factors that influence the migration and maintenance of relevant immune cells into an infected tissue or a tumor microenvironment. Therefore, it is believed that the controlled administration of chemokines in the tumor microenvironment may be an effective immunotherapy against cancer. Previous studies have shown that CCL3, also known as macrophage inflammatory protein 1-alpha, facilitates the recruitment of dendritic cells (DCs) for the presentation of tumor Ags and promotes T cell activation. Here, we investigated the role of CCL3 in regulating the tumor microenvironment using a syngeneic mouse tumor model. We observed that MC38 tumors overexpressing CCL3 (CCL3-OE) showed rapid regression compared with the wild type MC38 tumors. Additionally, these CCL3-OE tumors showed an increase in the proliferative and functional tumor-infiltrating T cells. Furthermore, PD-1 immune checkpoint blockade accelerated tumor regression in the CCL3-OE tumor microenvironment. Next, we generated a modified CCL3 protein for pre-clinical use by fusing recombinant CCL3 (rCCL3) with a non-cytolytic hybrid Fc (HyFc). Administering a controlled dose of rCCL3-HyFc via subcutaneous injections near tumors was effective in tumor regression and improved survival along with activated myeloid cells and augmented T cell responses. Furthermore, combination therapy of rCCL3-HyFc with PD-1 blockade exhibited prominent effect to tumor regression. Collectively, our findings demonstrate that appropriate concentrations of CCL3 in the tumor microenvironment would be an effective adjuvant to promote anti-tumor immune responses, and suggest that administering a long-lasting form of CCL3 in combination with PD-1 blockers can have clinical applications in cancer immunotherapy.

Highlighted STAT3 as a potential drug target for cancer therapy

  • Lee, Haeri;Jeong, Ae Jin;Ye, Sang-Kyu
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.415-423
    • /
    • 2019
  • Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic transcription factor that regulates cell proliferation, differentiation, apoptosis, angiogenesis, inflammation and immune responses. Aberrant STAT3 activation triggers tumor progression through oncogenic gene expression in numerous human cancers, leading to promote tumor malignancy. On the contrary, STAT3 activation in immune cells cause elevation of immunosuppressive factors. Accumulating evidence suggests that the tumor microenvironment closely interacts with the STAT3 signaling pathway. So, targeting STAT3 may improve tumor progression, and anti-cancer immune response. In this review, we summarized the role of STAT3 in cancer and the tumor microenvironment, and present inhibitors of STAT3 signaling cascades.

Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis

  • Shibuya, Masabumi
    • BMB Reports
    • /
    • 제41권4호
    • /
    • pp.278-286
    • /
    • 2008
  • Angiogenesis, the formation of blood vessels, is essential for preparing a closed circulatory system in the body, and for supplying oxygen and nutrition to tissues. Major diseases such as cancer, rheumatoid arthritis, and atherosclerosis include pathological angiogenesis in their malignant processes, suggesting anti-angiogenic therapy to be a new strategy for suppression of diseases. However, until the 1970s, the molecular basis of angiogenesis was largely unknown. In recent decades, extensive studies have revealed a variety of angiogenic factors and their receptors, including vascular endothelial growth factor (VEGF)-VEGFRs, Angiopoietin-Tie, Ephrin-EphRs and Delta-Notch to be the major regulators of angiogenesis in vertebrates. VEGF and its receptors play a central role in physiological as well as pathological angiogenesis, and functional inhibitors of VEGF and VEGFRs such as anti-VEGF neutralizing antibody and small molecules that block the tyrosine kinase activity of VEGFRs have recently been approved for use to treat patients with colorectal, lung, renal and liver cancers. These drugs have opened a novel field of cancer therapy, i.e. anti-angiogenesis therapy. However, as yet they cannot completely cure patients, and cancer cells could become resistant to these drugs. Thus, it is important to understand further the molecular mechanisms underlying not only VEGF-VEGFR signaling but also the VEGF-independent regulation of angiogenesis, and to learn how to improve anti-angiogenesis therapy.