• Title/Summary/Keyword: Anti-platelet

Search Result 347, Processing Time 0.025 seconds

Anti-Platelet Aggregation Activity of Stilbene Derivatives from Rheum undulatum

  • Ko, Sung-Kwon;Lee, Seung-Mok;Whang, Wan-Kyunn
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.401-403
    • /
    • 1999
  • In continued studies on cultivated Korean rhubarb rhizomes (Rheum undulatum), three known stillbenes (desoxyrhapontigenin, rhapontigenin, piceatannol) have been screened for activity on blood platelet aggregation. Both rhapontigenin and desoxyrhapontigenin exhibited strong inhibition on the aggregation induced by arachidonic acid collagen. However, piceatannol did not show inhibition. These inhibitory effects may partially contribute to anti-blood stagnancy activity of rhubarb.

  • PDF

Inhibitory Effect of Scopoletin on U46619-induced Platelet Aggregation through Regulation of Ca2+ Mobilization

  • Lee, Dong-Ha
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Platelet aggregation is essential for hemostatic process in case of blood vessels damages. However, excessive platelet aggregation can cause cardiovascular disorders including atherosclerosis, thrombosis and myocardial infarction. Scopoletin is usually found in the roots of genus Scopolia or Artemisia, and is known to have anticoagulant and anti-malarial effects. This study investigated the effect of scopoletin on human platelet aggregation induced by U46619, an analogue of thromboxane $A_2(TXA_2)$. Scopoletin had anti-platelet effects by down-regulating $TXA_2$ and intracellular $Ca^{2+}$ mobilization ($[Ca^{2+}]_i$), the aggregation-inducing molecules generated in activated platelets. On the other hand, scopoletin increased the levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which are known to be intracellular $Ca^{2+}$ antagonists. This resulted in inhibition of fibrinogen binding to ${\alpha}IIb/{\beta}_3$ in U46619-induced human platelet aggregation. In addition, scopoletin inhibited the release of adenosine trisphosphate (ATP) in dose-dependent manner. This result means that the aggregation amplification activity through the granule secretion in platelets was suppressed by scopoletin. Therefore, we demonstrated that scopoletin has a potent antiplatelet effect and is highly likely to prevent platelet-derived vascular disease.

Gallocatechin Gallate Inhibits Platelet Aggregation by Arachidonic Acid Liberation and $TxA_2$ Synthase Activity

  • Cho, Mi-Ra;Lee, Kyung-Sup;Lee, Jung-Jin;Jin, Yong-Ri;Son, Dong-Ju;Yun, Yeo-Pyo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.78.2-78.2
    • /
    • 2003
  • We have previously reported that green tea catechins (GTC) displayed anti-thrombotic activity, and that this might be due to anti-platelet rather than anti-coagulation effects. In the present study, we have studied the anti-platelet activity and mechanism of gallocatechin gallate (GCG), which is a component of GTC. GCG inhibited the collagen- and U46619-induced aggregation of rabbit platelets, with IC$\^$50/ values of 63.0 and 48.3 ${\mu}$M, respectively. GCG also inhibited collagen-induced serotonin release and TxB$_2$ formation in a similar manner of platelets aggregation. (omitted)

  • PDF

Anti-Platelet Drug Resistance in the Prediction of Thromboembolic Complications after Neurointervention

  • Ryu, Dal-Sung;Hong, Chang-Ki;Sim, Yoo-Sik;Kim, Chang-Hyun;Jung, Jin-Young;Joo, Jin-Yang
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.4
    • /
    • pp.319-324
    • /
    • 2010
  • Objective : The aim of this study was to analyze the correlation between thromboembolic complications and anti platelet drugs before and after neurointervention. Methods : Blood samples and radiographic data of patients who received a neurointervention (coil embolization, stent placement or both) were collected prospectively. Rapid platelet function assay-aspirin (RPFA-ASA) was used to calculate aspirin resistance in aspirin reaction units (ARU). For clopidogrel resistance, a P2Y12 assay was used to analyze the percentage of platelet inhibition. ARU > 550 and platelet inhibition < 40% were defined as aspirin and clopidogrel resistance, respectively. Results : Both aspirin and clopidogrel oral pills were administered in fifty-three patients before and after neurointerventional procedures. The mean resistance values of all patients were 484 ARU and < 39%. Ten (17.0%) of 53 patients showed resistance to aspirin with an average of 597 ARU, and 33 (62.3%) of 53 patients showed resistance to clopidogrel with an average of < 26%. Ten patients demonstrated resistance to both drugs, 5 of which suffered a thromboembolic complication after neurointervention (mean values : 640 ARU and platelet inhibition < 23%). Diabetic patients and patients with hypercholesterolemia displayed mean aspirin resistances of 513.7 and 501.8 ARU, and mean clopidogrel resistances of < 33.8% and < 40.7%, respectively. Conclusion : Identifying individuals with poor platelet inhibition using standard regimens is of great clinical importance and may help prevent cerebral ischemic events in the future. Neurointerventional research should focus on ideal doses, timing, choices, safety, and reliable measurements of anti platelet drug therapy, as well as confirming the clinical relevance of aggregometry in cerebrovascular patients.

The Inhibitory Effects of Cordycepin (3'-deoxyadenosine) on Thapsigargin-enhanced Cytosolic $Ca^{2+}$-influx and -mobilization in Human Platelets

  • Cho, Hyun-Jeong;Park, Hwa-Jin
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.273-279
    • /
    • 2009
  • Cordycepin (3'-deoxyadenosine) is an adenosine analogue isolated from Cordyceps militaris, and it has been used as an anti-cancer and anti-inflammation ingredient in traditional Chinese medicine. We investigated the effects of cordycepin on human platelet aggregation induced by thapsigargin, and determined the cytosolic free $Ca^{2+}$ levels ($[Ca^{2+}]_i$), an aggregation-stimulating factor. Cordycepin significantly inhibited thapsigargin-induced platelet aggregation. Its inhibitory effect was continually sustained at the maximal aggregation concentration of thapsigargin. The thapsigargin-induced $[Ca^{2+}]_i$ were clearly reduced by cordycepin in the presence of exogenous $CaCl_2$ or extracellular $Ca^{2+}$-chelator (EDTA). These results suggest that cordycepin inhibited thapsigargin-induced $Ca^{2+}$-influx from extracellular domain and thapsigargin-induced $Ca^{2+}$-mobilization from intracellular $Ca^{2+}$ storage. Accordingly, our data demonstrated that cordycepin may have a beneficial effect on platelet aggregation-mediated thrombotic diseases by inhibiting a $[Ca^{2+}]_i$-elevation.

  • PDF

A Comparative Study of the Anti-Platelet Effects of cis- and trans-Resveratrol

  • Kim, Hwa;Oh, Seok-Jeong;Liu, Yingqiu;Lee, Moo-Yeol
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.201-205
    • /
    • 2011
  • Although various biological activities of resveratrol have been extensively studied, most reports have focused on trans-resveratrol and little attention has been paid to the cis-isomer. In this study, the effect of cis-resveratrol on platelet activity was examined and compared with that of the trans-isomer. Treatment with cis-resveratrol resulted in inhibition of platelet aggregation induced by thrombin, collagen or ADP, which are representative aggregation-inducing agents, and the trans-isomer elicited the same effects. These effects were concentration-dependent in the range of 1-100 ${\mu}M$. However, the potency of the cis-isomer was much lower than that of the trans-isomer; the $IC_{50}$ values for the cis-isomer versus the trans-isomer were $31{\pm}12$ vs $151{\pm}3$, $161{\pm}3$ vs $91{\pm}4$, and $601{\pm}15$ vs $251{\pm}6\;{\mu}M$ for thrombin-, collagen- and ADP-induced aggregation, respectively. These results indicate that cis-resveratrol has a less potent anti-platelet activity, compared with the trans-isomer, and raise the possibility that the biological activities of the cis-isomer may be different from those of the trans-isomer. It will be necessary to evaluate the activity of cis-resveratrol independently of the trans-isomer.

Anti-oxidant, Anti-coagulation, and Anti-platelet Aggregation Activities of Black Currant (Ribes nigrum L.) (블랙커런트의 항산화, 항응고 및 혈소판 응집저해 활성)

  • Kim, Mi-Sun;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1400-1408
    • /
    • 2016
  • The black currant (Ribes nigrum L.) is belong to the Grossulariaceae family, and has piquant berries, which can be eaten as raw or as processed foods, such as jams, jelly, juice and syrups. In this study, the fresh juice of black currant (FJBC) from Austria and its subsequent organic solvent fractions, such as hexane fraction, ethylacetate (EA) fraction, butanol fraction and water residue, were prepared and their in-vitro anti-oxidant, anti-coagulation and anti-platelet aggregation activities were evaluated. The FJBC and EA fraction, which has concentrated polyphenol and flavonoid, showed strong radical scavenging activities and reducing power. The $RC_{50}s$ of EA fraction against DPPH anion, ABTS cation, nitrite were 136.3, 66.2 and $115.5{\mu}g/ml$, respectively, those are 1/10, 1/16, and 1/7.7 of $RC_{50}s$ of vitamin C. In anti-coagulation assay, the FJBC, EA and butanol fraction showed significant inhibitory activities against thrombin, prothrombin and coagulation factors. Furthermore, the anti-platelet aggregation activities of EA and butanol fraction were the stronger than that of aspirin. The concentrations required for 50% platelet aggregation inhibition of aspirin, EA and butanol fraction were 0.395, 0.192 and 0.261 mg/ml, respectively. The EA and butanol fraction have no hemolysis activities up to 0.5 mg/ml against human red blood cells. The results suggest that the FJBC and its EA and butanol fraction have high potentials as novel anti-thrombosis agents. This report provides the first evidence of anti-thrombosis activity of black currant.

Anti-platelet Effects of Isoscopoletin through Regulation of PI3K/Akt and MAPK on Collagen-induced Human Platelets (콜라겐-유도의 사람 혈소판에서 PI3K/Akt 및 MAPK 조절을 통한 Isoscopoletin의 항혈소판 효과)

  • Lee, Dong-Ha
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.3
    • /
    • pp.151-157
    • /
    • 2020
  • When blood vessels are damaged, a rapid hemostatic reaction occurs to minimize blood loss and maintain normal circulation. Platelet activation and aggregation is essential in this process. However, excessive platelet aggregation or abnormal platelet aggregation may be the cause of cardiovascular disease, such as thrombosis, stroke and atherosclerosis. Therefore, it is important to prevent and treat cardiovascular disease by finding substances that can regulate platelet activation and suppress aggregation reactions. Isoscopoletin, which is mainly found in the roots of plants Artemisia or Scopolia, has been reported to have potential pharmacological effects on anticancer and Alzheimer's disease, but its role and mechanisms for platelet aggregation and thrombus formation are unknown. This study confirmed the effect of isoscopoletin on major regulation of collageninduced human platelet aggregation, TXA2 production and intracellular granular secretion (ATP and serotonin release). In addition, the effects of isoscopoletin on phosphorylation of phosphorylated proteins PI3K/Akt and MAPK involved in signal transduction in platelet aggregation was studied. As a result, isoscopoletin significantly inhibited the phosphorylation of PI3K/Akt and MAPK, significantly inhibiting platelet aggregation through TXA2 production and intracellular granular secretion (ATP and serotonin release). Therefore, we suggest that isoscopoletin is an anti-platelet substance that regulates phosphorylation of phosphorus proteins such as PI3K/Akt and MAPK and is valuable as a preventive and therapeutic agent for platelet-derived cardiovascular disease.

Ginseng Intestinal Bacterial Metabolite IH901 as a New Anti-Metastatic Agent

  • Hideo Hasegawa;Sung, Jong-Hwan;Huh, Jae-Doo
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.539-544
    • /
    • 1997
  • Anti-metastatic activities of IH901, an intestinal bacterial metabolic derivative formed from Ginseng protopanaxadiol saponins, was determined in vitro and in vivo. Under in vitro conditions, IH901 inhibited the migration of bovine aortic endothelial cells 25 times stronger than suramin and suppressed the invasion of HT1080 human fibrosarcoma cells into reconstituted basement membrane components of Matrigel 1000 times stronger than RGDS peptide. IH901 also showed inhibitory effect on type-IV collagenase secretion from HT 1080 cells and platelet aggregation. When the anti-metastatic activity of IH901 was evaluated in comparison with that of 5-FU using a spontaneous lung metastatic model of Lewis lung carcinoma, the administration of IH901 (10 mg/kg p. o.) to tumor-bearing mice led to a significant decrease in lung metastasis (43% of untreated control), which was slightly more effective than that obtained with 5-FU (56% of control). Thus, IH901 seems to exhibit its anti-metastatic activity partly through the inhibition of tumor invasion which results from the blockade of type IV collagenase secretion and also through anti-platelet and anti-angiogenic activities.

  • PDF