Browse > Article
http://dx.doi.org/10.22889/KJP.2020.51.3.151

Anti-platelet Effects of Isoscopoletin through Regulation of PI3K/Akt and MAPK on Collagen-induced Human Platelets  

Lee, Dong-Ha (Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University)
Publication Information
Korean Journal of Pharmacognosy / v.51, no.3, 2020 , pp. 151-157 More about this Journal
Abstract
When blood vessels are damaged, a rapid hemostatic reaction occurs to minimize blood loss and maintain normal circulation. Platelet activation and aggregation is essential in this process. However, excessive platelet aggregation or abnormal platelet aggregation may be the cause of cardiovascular disease, such as thrombosis, stroke and atherosclerosis. Therefore, it is important to prevent and treat cardiovascular disease by finding substances that can regulate platelet activation and suppress aggregation reactions. Isoscopoletin, which is mainly found in the roots of plants Artemisia or Scopolia, has been reported to have potential pharmacological effects on anticancer and Alzheimer's disease, but its role and mechanisms for platelet aggregation and thrombus formation are unknown. This study confirmed the effect of isoscopoletin on major regulation of collageninduced human platelet aggregation, TXA2 production and intracellular granular secretion (ATP and serotonin release). In addition, the effects of isoscopoletin on phosphorylation of phosphorylated proteins PI3K/Akt and MAPK involved in signal transduction in platelet aggregation was studied. As a result, isoscopoletin significantly inhibited the phosphorylation of PI3K/Akt and MAPK, significantly inhibiting platelet aggregation through TXA2 production and intracellular granular secretion (ATP and serotonin release). Therefore, we suggest that isoscopoletin is an anti-platelet substance that regulates phosphorylation of phosphorus proteins such as PI3K/Akt and MAPK and is valuable as a preventive and therapeutic agent for platelet-derived cardiovascular disease.
Keywords
Isoscopoletin; PI3K/Akt; MAPK; $TXA_2$; Granule secretion;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 McNicol, A. and Shibou, T. S. (1998) Translocation and phosphorylation of cytosolic phospholipase A2 in activated platelets. Thromb. Res. 92: 19-26.   DOI
2 Chuang, W. Y., Kung, P. H., Kuo, C. Y. and Wu, C. C. (2013) Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/Akt pathway. Thromb. Haemost. 109: 1120-1130.   DOI
3 Ali, M. Y., Jannat, S., Jung, H. A., Choi, R. J., Roy, A. and Choi, J. S. (2016) Anti-Alzheimer's disease potential of coumarins from Angelica decursiva and Artemisia capillaris and structure-activity analysis. Asian. Pac. J. Trop. Med. 9: 103-111.   DOI
4 Dong, J., Yuan, J., Wang, J. L., Ji, R. F., Quan, Q. H., Guo, X. Y., Gao, J. and Liu, Y. G. (2017) Study on screening antitumor active fractions and chemical components in active fractions from root of Anaycclus pyrethrum. Zhongguo Zhong Yao Za Zhi 42: 3932-3937.
5 Huang, H. C., Chu, S. H. and Chao, P. D. (1991) Vasorelaxants from Chinese herbs, emodin and scoparone, possess immunosuppressive properties. Eur. J. Pharmacol. 198: 211-213.   DOI
6 Huang, H. C., Lee, C. R., Weng, Y. I., Lee, M. C. and Lee, Y. T. (1992) Vasodilator effect of scoparone (6,7-dimethoxycoumarin) from a Chinese herb. Eur. J. Pharmacol. 218: 123-128.   DOI
7 Cipollone, F., Patrignani, P., Greco, A., Panara, M. R., Padovano, R., Cuccurullo, F., Patrono, C., Rebuzzi, A. G., Liuzzo, G., Quaranta, G. and Maseri, A. (1997) Differential suppression of thromboxane biosynthesis by indobufen and aspirin in patients with unstable angina. Circulation 96: 1109-1116.   DOI
8 Lu, C., Li, Y., Hu, S., Cai, Y., Yang, Z. and Peng, K. (2018) Scoparone prevents IL-$1{\beta}$-induced inflammatory response in human osteoarthritis chondrocytes through the PI3K/Akt/NF-${\kappa}B$ pathway. Biomed. Pharmacother. 106: 1169-1174.   DOI
9 Shin, J. H., Kwon, H. W. and Lee, D. H. (2019) Ginsenoside F4 inhibits platelet aggregation and thrombus formation by dephosphorylation of IP3RI and VASP. J. Appl. Biol. Chem. 62: 93-100.   DOI
10 Chang, M. C., Wang, T. M., Yeung, S. Y., Jeng, P. Y., Liao, C. H., Lin, C. C., Lin, B. R. and Jeng, J. H. (2011) Antiplatelet effect by p-cresol, a uremic and environmental toxicant, is related to inhibition of reactive oxygen species, ERK/p38 signaling and thromboxane A2 production. Atherosclerosis 219: 559-565.   DOI
11 Patrono, C. (2001) Aspirin: new cardiovascular uses for an old drug. Am. J. Med. 110: 62S-65S.   DOI
12 Lee, D. H. (2020) Inhibitory effects of scoparone through regulation of PI3K/Akt and MAPK on collagen-induced human platelets. J. Appl. Biol. Chem. 63: 131-136.   DOI
13 Irfan, M., Jeong, D., Saba, E., Kwon, H. W., Shin, J. H., Jeon, B. R., Kim, S., Kim, S. D., Lee, D. H., Nah, S. Y. and Rhee, M. H. (2019) Gintonin modulates platelet function and inhibits thrombus formation via impaired glycoprotein VI signaling. Platelets 30: 589-598.   DOI
14 McNicol, A. and Jackson, E. C. (2003) Inhibition of the MEK/ERK pathway has no effect on agonist-induced aggregation of human platelets. Biochem. Pharmacol. 65: 1243-1250.   DOI
15 Sabatine, M. S. and Jang, I. K. (2000) The use of glycoprotein IIb/IIIa inhibitors in patients with coronary artery disease. Am. J. Med. 109: 224-237.   DOI
16 Jackson, S. P. (2011) Arterial thrombosis?insidious, unpredictable and deadly. Nat. Med. 17: 1423-1436.   DOI
17 Schwartz, S. M., Heimark, R. L. and Majesky, M. W. (1990) Developmental mechanisms underlying pathology of arteries. Physiol. Rev. 70: 1177-1209.   DOI
18 Payrastre, B., Missy, K., Trumel, C., Bodin, S., Plantavid, M. and Chap, H. (2000) The integrin alpha IIb/beta 3 in human platelet signal transduction. Biochem. Pharmacol. 60: 1069-1074.   DOI
19 Morello, F., Perino, A. and Hirsch, E. (2009) Phosphoinositide 3-kinase signalling in the vascular system. Cardiovasc. Res. 82: 261-271.   DOI
20 Jennings, L. K. (2009) Role of platelets in atherothrombosis. Am. J. Cardiol. 103: 4A-10A.   DOI
21 Cattanco, M., Tenconi, P. M., Lecchi, A. and Mannucci, P. M. (1991) In vitro effects of picotamide on human platelet aggregation, the release re- action and thromboxane B2 production. Thromb. Res. 62: 717-724.   DOI
22 Su, C. Y., Shiao, M. S. and Wang, C. T. (1999) Differential effects of ganodermic acid S on the thromboxane A2-signaling pathways in human platelets. Biochem. Pharmacol. 58: 587-595.   DOI
23 Flevaris, P., Li, Z., Zhang, G., Zheng, Y., Liu, J. and Du, X. (2009) Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK-dependent integrin outside-in retractile signaling pathway. Blood 113: 893-901.   DOI
24 Adam, F., Kauskot, A., Rosa, J. P. and Bryckaert, M. (2008) Mitogenactivated protein kinases in hemostasis and thrombosis. J. Thromb. Haemost. 6: 2007-2016.   DOI
25 Bugaud, F., Nadal-Wollbold, F., Levy-Toledano, S., Rosa, J. P. and Bryckaert, M. (1990) Regulation of c-jun-NH2 terminal kinase and extracellular-signal regulated kinase in human platelets. Blood 94: 3800-3805.   DOI
26 Kramer, R. M., Roberts, E. F., Strifler, B. A. and Johnstone, E. M. (1995) Thrombin induces activation of p38 MAP kinase in human platelets. J. Biol. Chem. 270: 27395-27398.   DOI
27 Nadal-Wollbold, F., Pawlowski, M., Levy-Toledano, S., Berrou, E., Rosa, J. P. and Bryckaert, M. (2002) Platelet ERK2 activation by thrombin is dependent on calcium and conventional protein kinases C but not Raf-1 or B-Raf. FEBS Lett. 531: 475-482.   DOI
28 Patrono, C. (1994) Aspirin as an antiplatelet drug. N. Engl. J. Med. 330: 1287-1294.   DOI
29 Kramer, R. M., Roberts, E. F., Um, S. L., Borsch-Haubold, A. G., Watson, S. P., Fisher, M. J. and Jakubowski, J. A. (1996) p38 mitogenactivated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J. Biol. Chem. 271: 27723-27729.   DOI