• Title/Summary/Keyword: Anti-oxidant system

Search Result 114, Processing Time 0.037 seconds

Development of Porous Cellulose Hydrogel for Enhanced Transdermal Delivery of Liquiritin and Liquiritigenin as Licorice Flavonoids (감초 플라보노이드 Liquiritin 및 Liquiritigenin을 담지한 피부전달체인 셀룰로오스 다공성 하이드로젤 제형 개발)

  • Kim, Su Ji;Kwon, Soon Sik;Yu, Eun Ryeong;Park, Soo Nam
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.676-681
    • /
    • 2014
  • Licorice, widely used as a herbal medicine, has flavonoids such as liquiritin and its aglycone, liquiritigenin that show anti-oxidant and anti-inflammatory properties. Licorice flavonoid-loaded cellulose hydrogels were prepared as carriers for skin drug delivery, and their properties were investigated. The porous cellulose hydrogel was made by reacting cellulose with epichlorohydrin as a cross-linking agent in NaOH/urea(1~10%) solutions. Through studies on the rheological properties and water uptake of the hydrogel, a NaOH/urea(6%) solution was established as being optimum for the synthesis of the cellulose hydrogel containing liquiritin and liquiritigenin. Scanning electron microscopy (SEM) observations of a cross-section of the prepared hydrogel indicated its porosity. In particular, in skin permeation experiments using a Franz diffusion cell, hydrogel containing the licorice flavonoids showed remarkable transdermal permeation compared to the control group. These results indicate that porous cellulose hydrogel is a potential drug delivery system to enhance the skin permeation of licorice flavonoids.

Lamellar-bio nano-hybrid; The Study for Stability of Catechin (Green Tea: EGCG) Using 3-Dimensional Liposome (라멜라-바이오 나노하이브리드: 3 Dimension-liposome을 이용한 카테킨(EGCG)에 안정화에 대한 연구)

  • Hong Geun, Ji;Jung Sik, Choi;Hee Suk, Kwon;Sung Rack, Cho;Byoung Kee, Jo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.201-205
    • /
    • 2004
  • In these several years, as many people have been attracted by the functional cosmetics, there are a lot of study to enhance the stability of active ingredients for light, heat, oxygen, etc. in the academic and industrial field. Especially, catechin is well known as strong anti-oxidant, anti-inflammatory and reducing agent for oxidative stress but it is very unstable for light, heat, oxygen. etc. In this study, the stability and skin penetration of catechin are improved by 3-dimensional method. As I-dimension, porous silica is prepared using sol-gel method, and then catechin is adsorbed in pores of silica. As 2-dimension, solid lipid nanoparticles (SLN) are obtained using non-phospholipid vesicles. Finally 3-dimension is completion through lamellar phase self-organization that combines SLN catechin with skin lipid matrix. We used laser light scattering system, cyro-SEM, chromameter, HPLC and image analyzer to analyze our 3-dimentional systems. According to chromameter date, the color stability of 3-dimensional catechin is enhanced by 5-10 times compared with general liposome systems. We also confirmed through HPLC analysis that 3-dimensional catechin is more long lasting. The effect of skin penetration and wrinkle reduction are improved, too.

Effects of Agrimonia pilosa Ledeb. Water Extract on α-Glucosidase Inhibition and Glucose Uptake in C2C12 Skeletal Muscle Cells (짚신나물 열수 추출물의 α-Glucosidase 저해 효과 및 근육세포에서 포도당 이용에 미치는 영향)

  • Kim, Sang-Mi;Lee, Young Min;Kim, Mi-Ju;Nam, Song-Yee;Kim, Sung-Hee;Jang, Hwan-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.806-813
    • /
    • 2013
  • Agrimonia pilosa Ledeb. is a medicinal plant with anti-tumor, anti-oxidant, anti-inflammatory and anti-hyperglycemic activities. However, few studies of the anti-diabetic effect of A. pilosa on insulin resistance status have been performed. In the present study, the anti-diabetic effect of A. pilosa water extract (AP) was determined by investigating its ${\alpha}$-glucosidase inhibitory property, glucose utilization, and uptake, as well as insulin resistance mechanism of action in C2C12 skeletal muscle cells. Compared to positive control (acarbose), AP ($10mg/m{\ell}$) showed a similar ${\alpha}$-glucosidase inhibitory capacity. Glucose uptake was significantly increased by $1{\mu}m$ insulin treatment (p<0.05). However, palmitic acid (FFA, 1 mM) induced muscle insulin resistance and glucose uptake dysfunction. On the other hand, AP ($10{\mu}g/m{\ell}$) was capable of reversing the FFA-induced insulin resistance in C2C12 myotubes. Compared to control, AP ($100{\mu}g/m{\ell}$ without insulin) significantly increased the utilization of glucose (p<0.05) in C2Cl2 myotubes cultured in normal glucose (7 mM). AP treatment significantly increased the relative mRNA and protein expression levels of Akt. In particular, the effect of A. pilosa on the insulin signaling system is associated with the up-regulation of Akt genes and glucose uptake in C2Cl2 myotubes. These results suggest that A. pilosa is useful in the prevention of diabetes and the treatment of hyperglycemic disorders.

Anti-aging and Anti-diabetes Effects of Aconitum pesudo-laeve var. erectum Extracts (진범(Aconitum pesudo-laeve var. erectum) 추출물의 항노화 및 항당뇨 효과)

  • Kim, Jeung-Hoan;Lee, Soo-Yeon;Kwon, O-Jun;Park, Joo-Hoon;Lee, Jin-Young
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.616-621
    • /
    • 2013
  • Aconitum pesudo-laeve var erectum has been known to possess anti-inflammatory activity and modulate the intestinal immune system. In addition, it has traditionally been used for the treatment of water retention in the body. In this study, the anti-aging and anti-diabetes effects of water and ethanol extracts from Aconitum pesudo-laeve var. erectum were investigated. The activities of each extract were measured by antioxidant tests such as DPPH and ABTS radical scavenging activity, antioxidant protection factor (PF), TBARs content, and ${\alpha}$-amylase and ${\alpha}$-glucosidase inhibition activity assay. DPPH radical scavenging activity was found in over 50% of water and ethanol extracts at $100{\mu}g/ml$, $50{\mu}g/ml$, respectively. The ABTS radical scavenging activity of ethanol extract was $99.8{\pm}0.1$% at $1,000{\mu}g/ml$ in water, which was highest among the ethanol extract concentrations. PFs measured with ${\beta}$-carotene-linoleate model systems were in the order of ethanol (1.49 PF at $1,000{\mu}g/ml$) > ethanol (1.40 PF at $500{\mu}g/ml$) > water (1.33 PF at $1,000{\mu}g/ml$) > water (1.27 PF at $500{\mu}g/ml$). TBARs content in ethanol extracts ($1,000{\mu}g/ml$) was $0.16{\pm}0.03{\mu}M$, which was lower than that of water extracts and other ethanol extract concentrations. The extracts also showed over 90% of ${\alpha}$-amylase inhibition and over 60% of ${\alpha}$-glucosidase inhibition ratio in water ($1,000{\mu}g/ml$) and ethanol extracts (100~$1,000{\mu}g/ml$). These results suggest that Aconitum pesudo-laeve var. erectum extracts could be used as a cosmetic source and preventive agent for aging and diabetes.

Effect of S-Allyl Cysteine(SAC) on the Proliferation of Umbilical Cord Blood(UCB)-derived Mesenchymal Stem Cells(MSCs) (S-Allyl Cysteine(SAC)이 제대혈 유래 중간엽 줄기세포 증식에 미치는 영향)

  • Park, Ran-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.2
    • /
    • pp.313-319
    • /
    • 2009
  • To improve the growth of human mesenchymal stem cells(hMSCs) under general cell culture conditions(20% $O_2$ and 5% $CO_2$), we examined the effect of s-allylcysteine(SAC), which is known as an antioxidant and the main component of aged-garlic extract, on hydrogen peroxide-induced cellular stress in hMSCs. We found that SAC blocked hydrogen peroxideinduced cell death and cellular apoptosis, but that SAC did not improve the growth of hMSCs during short-term culture. To evaluate the protective effect of SAC, we examined the endogenous expression of the antioxidant enzymes catalase (CAT), superoxide dismutase(SOD), and glutathione peroxidase(Gpx) in hMSCs. Hydrogen peroxide was found to downregulate the expression of CAT, SOD, and Gpx at the protein level. However, in the pre-treatment group of SAC, SAC inhibited the hydrogen peroxide-induced down-regulation of CAT, SOD, and Gpx. Unfortunately, treatment with SAC alone did not induce the up-regulation of antioxidant enzymes and the cell proliferation of hMSCs. Surprisingly, SAC improved cell growth in a single cell level culture of hMSCs. These results indicate that SAC may be involved in the preservation of the self-renewal capacity of hMSCs. Taken together, SAC improves the proliferation of hMSCs via inhibition of oxidative-stress-induced cell apoptosis through regulation of antioxidant enzymes. In conclusion, SAC may be an indispensable component in an in vitro culture system of human MSCs for maintaining self-renewal and multipotent characterization of human MSCs.

Effects of Daechilgi-tang on Glutamate-induced Apoptosis in C6 Glial Cells (대칠기탕(大七氣湯)이 Glutamate에 의한 C6 Glial 세포의 Apoptosis에 미치는 영향)

  • Kim, Hye-Yoon;Ko, Seok-Jae;Bang, Chang-Ho;Shin, Sun-Ho;Lee, John Dong-Yeop;Lee, In
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.4
    • /
    • pp.693-705
    • /
    • 2010
  • Objectives : The water extract of Daechilgi-tang(DCGT) has traditionally been used for treatment of qi stagnation(氣滯), which is considered to be one of the important causes of neuronal disease in oriental medicine. However, little is known about the mechanism by which DCGT protects neuronal cells from brain cell damages. Methods and Results : The author tested the mechanism of the cytoprotective effect of DCGT on glutamate -stimulated rat C6 glial cells. DCGT significantly protected C6 glial cells from glutamate in MTT assay. Pre-treatment of C6 glial cells with DCGT markedly inhibited the DNA fragmentation of C6 cells induced by glutamate. Glutamate increased the generation of reactive oxygen species(ROS) and intracellular calcium level in C6 glial cells. However, pre-treatment with DCGT markedly suppressed the increase of ROS generation and intracellular calcium accumulation induced by glutamate. Among apoptosis signaling mediators, DCGT markedly increased the expression level of Bcl2 in glutamate-treated cells. It also inhibited the cleavage of caspase-3 and PARP proteins by glutamate in C6 glial cells. Conclusions : These results suggest that DCGT protects brain cells from glutamate cytotoxicity through inhibition of ROS generation and activation of apoptosis signaling pathway as well as induction of the anti-oxidant system.

Microemulsion Fomulation for Enhanced Topical Absorption of Root Extract of Angelica gigas (당귀 추출물의 피부 흡수 증가를 위한 마이크로에멀젼 조성)

  • Jung, Eun-Jae;Choi, Joon-Ho;Park, Chun-Geon;Choi, Ae-Jin;Jeong, Se-Ho;Chung, Suk-Jae;Shim, Chang-Koo;Kim, Dae-Duk
    • YAKHAK HOEJI
    • /
    • v.56 no.3
    • /
    • pp.152-157
    • /
    • 2012
  • Angelica gigas is one of the most widely used herbal medicines in Asia. Root extract of Angelica gigas is known to have anti-oxidant activity and skin whitening effect. The aim of this study was to prepare microemulsion system of root extracts of Angelica gigas for topical delivery. Microemulsion was successfully prepared by using MCT (medium chain triglyceride) as an oil phase, Labrasol as a surfactant, and the mixture of propyleneglycol and phosphatidylcholine (4 : 1) as a cosurfactant. In vitro and in vivo skin permeation and deposition of decursin, as a marker, was determined using hairless mouse. Microemulsion significantly increased the in vitro skin permeation of decursin for up to 12 hours and was significantly higher than the control (water). Moreover, microemulsion formulation showed significantly higher skin deposition of decursin compared to the control in both in vitro and in vivo studies. Thus, microemulsion could be a useful vehicle for topical application of root extracts of Angelica gigas.

Pyruvate Protection against Endothelial Cytotoxicity Induced by Blockade of Glucose Uptake

  • Chung, Se-Jin;Lee, Se-Hee;Lee, Yong-Jin;Park, Hyoung-Sook;Bunger, Rolf;Kang, Young-Hee
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • We have previously demonstrated that the redox reactant pyruvate prevents apoptosis in the oxidant model of bovine pulmonary artery endothelial cells (BPAEC), and that the anti-apoptotic mechanism of pyruvate is mediated in part via the mitochondrial matrix compartment. However, cytosolic mechanisms for the cytoprotective feature of pyruvate remain to be elucidated. This study investigated the pyruvate protection against endothelial cytotoxicity when the glycolysis inhibitor 2-deoxy-D-glucose (2DG) was applied to BPAEC. Millimolar 2DG blocked the cellular glucose uptake in a concentration- and time-dependent manner with >85% inhibition at $\geq$5 mM within 24 h. The addition of 2DG evoked BPAEC cytotoxicity with a substantial increase in lipid peroxidation and a marked decrease in intracellular total glutathione. Exogenous pyruvate partially prevented the 2DG-induced cell damage with increasing viability of BPAEC by 25-30%, and the total glutathione was also modestly increased. In contrast, 10 mM L-lactate, as a cytosolic reductant, had no effect on the cytotoxicity and lipid peroxidation that are evoked by 2DG. These results suggest that 2DG toxicity may be a consequence of the diminished potential of glutathione antioxidant, which was partially restored by exogenous pyruvate but not L-lactate. Therefore, pyruvate qualifies as a cytoprotective agent for strategies that attenuate the metabolic dysfunction of the endothelium, and cellular glucose oxidation is required for the functioning of the cytosolic glutathione/NADPH redox system.

Effect of PRX-1 Downregulation in the Type 1 Diabetes Microenvironment

  • Yoo, Jong-Sun;Lee, Yun-Jung;Hyung, Kyeong Eun;Yoon, Joo Won;Lee, Ik Hee;Park, So-Young;Hwang, Kwang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.463-468
    • /
    • 2012
  • Type 1 diabetes (T1D) is caused by dysregulation of the immune system in the pancreatic islets, which eventually leads to insulin-producing pancreatic ${\beta}$-cell death and destabilization of glucose homeostasis. One of the major characteristics of T1D pathogenesis is the production of inflammatory mediators by macrophages that result in destruction or damage of pancreatic ${\beta}$-cells. In this study the inflammatory microenvironment of T1D was simulated with RAW264.7 cells and MIN6 cells, acting as macrophages and pancreatic ${\beta}$-cells respectably. In this setting, peroxiredoxin-1, an anti-oxidant enzyme was knocked down to observe its functions in the pathogenesis of T1D. RAW264.7 cells were primed with lipopolysaccharide and co-cultured with MIN6 cells while PRX-1 was knocked down in one or both cell types. Our results suggest that hindrance of PRX-1 activity or the deficiency of this enzyme in inflammatory conditions negatively affects pancreatic ${\beta}$-cell survival. The observed decrease in viability of MIN6 cells seems to be caused by nitric oxide production. Additionally, it seems that PRX-1 affects previously reported protective activity of IL-6 in pancreatic ${\beta}$ cells as well. These results signify new, undiscovered roles for PRX-1 in inflammatory conditions and may contribute toward our understanding of autoimmunity.

Neuroprotective mechanisms of dieckol against glutamate toxicity through reactive oxygen species scavenging and nuclear factor-like 2/heme oxygenase-1 pathway

  • Cui, Yanji;Amarsanaa, Khulan;Lee, Ji Hyung;Rhim, Jong-Kook;Kwon, Jung Mi;Kim, Seong-Ho;Park, Joo Min;Jung, Sung-Cherl;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.121-130
    • /
    • 2019
  • Glutamate toxicity-mediated mitochondrial dysfunction and neuronal cell death are involved in the pathogenesis of several neurodegenerative diseases as well as acute brain ischemia/stroke. In this study, we investigated the neuroprotective mechanism of dieckol (DEK), one of the phlorotannins isolated from the marine brown alga Ecklonia cava, against glutamate toxicity. Primary cortical neurons ($100{\mu}M$, 24 h) and HT22 neurons (5 mM, 12 h) were stimulated with glutamate to induce glutamate toxic condition. The results demonstrated that DEK treatment significantly increased cell viability in a dose-dependent manner ($1-50{\mu}M$) and recovered morphological deterioration in glutamate-stimulated neurons. In addition, DEK strongly attenuated intracellular reactive oxygen species (ROS) levels, mitochondrial overload of $Ca^{2+}$ and ROS, mitochondrial membrane potential (${\Delta}{\Psi}_m$) disruption, adenine triphosphate depletion. DEK showed free radical scavenging activity in the cell-free system. Furthermore, DEK enhanced protein expression of heme oxygenase-1 (HO-1), an important anti-oxidant enzyme, via the nuclear translocation of nuclear factor-like 2 (Nrf2). Taken together, we conclude that DEK exerts neuroprotective activities against glutamate toxicity through its direct free radical scavenging property and the Nrf-2/HO-1 pathway activation.