• Title/Summary/Keyword: Anti-optimization Method

Search Result 58, Processing Time 0.024 seconds

Guidance Synthesis to Control Impact Angle and Time

  • Shin, Hyo-Sang;Lee, Jin-Ik;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.129-136
    • /
    • 2006
  • A new guidance synthesis for anti-ship missiles to control impact angle and impact time is proposed in this paper. The flight vehicle is assumed as a 1st order lag system to consider more practical system. The proposed guidance synthesis enhances the survivability of anti-ship missiles because multiple anti-ship missiles with the proposed synthesis can hit the target simultaneously. The control input to satisfy constraints of zero miss distance and impact angle, and the feedforward bias control input to control impact time constitute the guidance law. The former is from trajectory shaping guidance, the latter is from neural network. And particle swarm optimization method is introduced to furnish reference input and output for learning in neural network. The performance of the proposed synthesis in the accuracy of impact time and angle is validated by numerical examples.

Neural Network Modeling of PECVD SiN Films and Its Optimization Using Genetic Algorithms

  • Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.87-94
    • /
    • 2001
  • Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.

  • PDF

Optimization of Protoplast Preparation and Regeneration of a Medicinal Fungus Antrodia cinnamomea

  • Wu, Jyun-De;Chou, Jyh-Ching
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.483-493
    • /
    • 2019
  • Antrodia cinnamomea is a unique medicinal fungus in Taiwan. It has been found rich in some pharmacologically active compounds for anti-cancer, hangover, and immune regulation etc. With the in-depth study of these components, it would be interesting and important to establish a molecular system for basic studies of A. cinnamomea. Thus, we would like to set up a foundation for this purpose by studying the A. cinnamomea protoplast preparation and regeneration. Firstly, we studied the optimization method of protoplast preparation of A. cinnamomea, and found various factors that may affect the yield during protoplast preparation, such as mycelial ages, pH values, and osmotic stabilizers. Secondly, in the regeneration of protoplasts, we explored the effects of various conditions on the regeneration of protoplasts, including different media and osmotic pressure. In addition, we found that citrate buffer with pH value around 3 dramatically increased the regeneration of protoplasts of A. cinnamomea, and provided a set of regeneration methodology for A. cinnamomea.

The research of porous Si for crystalline silicon solar cells (다공성 실리콘을 적용한 결정질 실리콘 태양전지에 관한 연구)

  • Lee, Jae-Doo;Kim, Min-Jeong;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.235-235
    • /
    • 2010
  • The Anti-reflection coating(ARC) properties can be formed on silicon substrate using a simple electrochemical etching technique. This etching step can be improve solar cell efficiency for a solar cell manufacturing process. This paper is based on the removal of silicon atoms from the surface a layer of porous silicon(PSi). Porous silicon is form by anodization and can be obtained in an electrolyte with hydrofluoric. It have demonstrated the feasibility of a very efficient porous Si layer, prepared by a simple, cost effective, electrochemical etching method. We expect our research can results approaching to lower than 10% of reflectance by optimization of process parametaer.

  • PDF

Optimization of Process Variables for Grinding of Ibuprofen using Response Surface Methodology (반응표면분석법을 이용한 이부프로펜의 분쇄공정변수의 최적화)

  • Sim, Chol-Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.685-691
    • /
    • 2013
  • Ibuprofen, non-steroidal anti-inflammatory drugs; NSAIDs, is a highly crystalline substance with the pharmaceutical properties of poor solubility and low bioavailability. The size reduction of ibuprofen is needed to improve the solubility. The objective of this study is to optimize the grinding condition of ibuprofen. Grinding of ibuprofen was carried out using a planetary mill. Grinding parameters were optimized using Box-Behnken experimental design method. The physical characteristics of ground ibuprofen were investigated for the particle size by particle size analyzer, for the crystal size by X-ray diffraction (XRD), and for the tensile strength by tensile/compression tester. The optimum conditions for the milling of ibuprofen were 290 rpm of the revolution number of mill, 24.6 g of the weight of sample, and 10 minutes of grinding time. The measured value of the particle size of ground ibuprofen at these optimum conditions was $13.5{\mu}m$. The results showed that the crystal size of ibuprofen was reduced by the planetary milling process. In case the relative density of the tablets formulated of ground ibuprofen was range of 0.85~0.90, the tensile strength of them was range of 1$2{\sim}14Kg_f/cm^2$.

Study on the Industrial Process of Rubber Anti-oxidant RD

  • Liu, Yu;Gao, Qinyu;Liu, Lianxin;Shi, Guangxia
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.830-834
    • /
    • 2011
  • This paper is on the industrial synthesis process of anti-oxidant RD ((2,2,4-trimethyl-1,2-dihydroquinoline polymer $(C_{12}H_{15}N)_n$. n=2-4)).The content of dimer, trimer and tetramer of RD as the inspection targets, using the orthogonal design method - take the ratios of keto-amine, the reaction time, the reaction temperatures and the ratios of catalyst acid-amine as inspect factors - to optimized the reaction condition. The results indicate that the best ratio of keto-amine is 2:1, the time of salification and condensation is 3 hours and 7.5 hours. The range of temperature of salification and condensation is $135^{\circ}C$ and $120-125^{\circ}C$, and that the best ratio of acid-amine is 0.2: 1 (the proportion is the concentration ratio for mole). Under the optimization conditions, the yield of RD was stabilized and content of RD more than 45%.

Development of a Small UGV for Vertical Obstacle Negotiation (수직장애물 환경 주행 능력향상을 위한 소형 UGV 플랫폼 설계)

  • Kim, Ji-Chul;Park, Jong-Won;Baek, Joo-Hyun;Ryu, Jae-Kwan;Kim, Beom-Su;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1166-1173
    • /
    • 2011
  • There have been many researches about SUGV (Small Unmanned Ground Vehicle) mechanism regarding off-road mobility and obstacle negotiation. This paper introduces an analysis of geometry parameters to enhance the vertical obstacle negotiation ability for the SUGV. Moreover, this paper proposes an anti-shock structure analysis of wheels to protect the main body of the SUGV when it falls off a vertical obstacle. Major system geometry parameters will be determined under certain constraints. The constraints and optimization problem for maximizing the ability of vertical obstacle negotiation will be presented and discussed. Dynamic simulation results and experiments with manufactured platform will also be presented to validate the analysis. Several types of wheel materials and structures will be compared to determine the best anti-shock wheel design through FEM (Finite Element Method) simulations.

Production of Liquiritigenin with Cell-based Biotransformation and Its Anti-Aging Activity (균사체 생물전환기술을 이용한 리퀘리티게닌 생산과 항노화 활성)

  • Hwang, Hye Jin;Jeong, Sang Chul;Park, Jong Pil
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.166-174
    • /
    • 2015
  • In this study, an efficient whole cell-based biotransformation for the production of liquiritigenin was developed using Laetiporus sulphureus CS0218 as biocatalyst and aqueous extracts of Glycyrrhiza uralensis as co-substrate, respectively. In order to determine the efficacy of this method, the optimal bioconversion conditions including mycelial growth, three important enzyme activities (${\beta}$-glucosidase, ${\alpha}$-rhamnosidase and ${\beta}$-xylosidase), and apparent viscosity of culture broth were monitored. After optimization, aqueous extracts of G. uralensis were added to the culture medium to directly produce algycone liquiritigenin. By applying this strategy, 67.5% of liquiritin was converted to liquiritigenin at pH 3.0 after 9 days of incubation and finally liquiritigenin was purified from the reaction mixture. And then, their biological activities including anti-oxidant and superoxide dismutase were observed. In fact, purified liquiritigenin was capable of bi-directional functions (i.e., either up-regulation or down-regulation of SIRT1 which is associated with aging). The results indicate that this strategy would be beneficial to produce biologically active liquiritigenin and could be used in pharmaceutical, cosmetic and food applications.

Effect of Extraction Condition on the Content of EGCG and Caffeine of Green Tea: Comparison with the Inhibitory Activity on Pancreatic Lipase

  • Lee, Eun Song;Lee, Mi Kyeong
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.166-172
    • /
    • 2013
  • Caffeine and epigallocatechin gallate (EGCG) are major constituents of green tea, the leaves of Camellia sinensis (Theaceae). Although EGCG is well known for diverse beneficial effect, caffeine is sometimes harmful with adverse effects. Therefore, the extraction efficiency was investigated using different extraction method such as extraction solvent, extraction time, extraction method, and repeated extraction. The content of EGCG and caffeine in green tea extract was quantitated by HPLC analysis. The extraction condition exerted difference on the extraction yield. The content of EGCG was also affected by different extraction condition. Especially, the extraction solvent greatly affected the content of EGCG in the extract. However, the content of caffeine was less affected compared to that of EGCG. The inhibitory effect of green tea extract on pancreatic lipase was almost similar regardless of extraction condition. Taken together, optimization of extraction condition will provide best efficacy for further development of green tea as anti-obesity therapeutics.

Optimal Evasive Maneuver for Sea Skimming Missiles against Close-In Weapon System (근접방어무기체계에 대한 함대함 유도탄의 최적회피기동)

  • Whang, Ick-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2096-2098
    • /
    • 2002
  • In this paper, the optimal evasive maneuver strategies for typical subsonic ASM(anti-ship missile) to reach its target ship with high survivability against CIWS(close in weapon system) are studied. The optimal evasive maneuver input is defined by the homing command optimizing the cost function which takes aiming errors of CIWS into account. The optimization problem for the effective evasive maneuver is formulated based on a simple missile dynamics model and a CIWS model. By means of solving the problem, a multiple hypotheses testing method is proposed. Since this method requires generation of too many hypotheses, the hypothesis-pruning technique is adopted. The solution shows that the optimal evasive maneuver is a bang-bane shaped command whose frequency is varied by the aimpoint determination strategy in CIWS.

  • PDF