DOI QR코드

DOI QR Code

Optimization of Process Variables for Grinding of Ibuprofen using Response Surface Methodology

반응표면분석법을 이용한 이부프로펜의 분쇄공정변수의 최적화

  • Sim, Chol-Ho (Department of Fine Chemistry and Advanced Materials, Sangji University)
  • 심철호 (상지대학교 정밀화학신소재학과)
  • Received : 2013.05.14
  • Accepted : 2013.07.07
  • Published : 2013.12.01

Abstract

Ibuprofen, non-steroidal anti-inflammatory drugs; NSAIDs, is a highly crystalline substance with the pharmaceutical properties of poor solubility and low bioavailability. The size reduction of ibuprofen is needed to improve the solubility. The objective of this study is to optimize the grinding condition of ibuprofen. Grinding of ibuprofen was carried out using a planetary mill. Grinding parameters were optimized using Box-Behnken experimental design method. The physical characteristics of ground ibuprofen were investigated for the particle size by particle size analyzer, for the crystal size by X-ray diffraction (XRD), and for the tensile strength by tensile/compression tester. The optimum conditions for the milling of ibuprofen were 290 rpm of the revolution number of mill, 24.6 g of the weight of sample, and 10 minutes of grinding time. The measured value of the particle size of ground ibuprofen at these optimum conditions was $13.5{\mu}m$. The results showed that the crystal size of ibuprofen was reduced by the planetary milling process. In case the relative density of the tablets formulated of ground ibuprofen was range of 0.85~0.90, the tensile strength of them was range of 1$2{\sim}14Kg_f/cm^2$.

이부프로펜은 비스테로이드성 소염진통제(Non-Steroidal Anti-Inflammatory Drugs; NSAIDs)의 대표적인 성분이다. 이부프로펜은 결정성이 크기 때문에 난용성이며, 따라서 생체이용률(bioavailability)도 낮다. 이와 같은 난용성을 개선하기 위해서는 이부프로펜의 입도를 감소시킬 필요가 있다. 본 연구의 목적은 이부프로펜의 분쇄조건을 최적화하는데 있다. 이부프로펜을 분쇄하기 위하여 유성밀을 사용하였으며, Box-Behnken 방법을 이용하여 분쇄변수들의 최적조건을 구하였다. 이부프로펜 분쇄생성물의 물성을 조사하기 위하여 입도, 결정크기 및 인장강도 측정에는 각각 입도분석기, XRD, tensile/compression tester를 사용하였다. 분쇄 최적조건은 밀회전수는 290 rpm, 시료장입량은 24.6 g, 분쇄시간은 10분이었으며, 이 조건에서 이부프로펜 분쇄생성물의 입도는 $13.5{\mu}m$이었다. 이부프로펜은 분쇄 후 결정크기가 감소하였다. 이부프로펜 분쇄생성물의 정제의 상대밀도가 0.85~0.90인 범위에서 그 정제의 인장강도는 $12{\sim}14Kg_f/cm^2$ 이었다.

Keywords

References

  1. Chaumeil, J. C., "Micronization : A Method of Improving the Bioavailability of Poorly Soluble Drugs," Meth. Find. Exp. Clin. Pharmacol, 20, 211(1998).
  2. Chiou, W. L. and Riegelman, S., "Pharmaceutical Application of Solid Dispersion Systems," J. Pharm. Sci., 60(9), 1281-1302(1971). https://doi.org/10.1002/jps.2600600902
  3. Hancock, B. C. and Zografi, G., "Characteristics and Significance of the Amorphous State in Pharmaceutical Systems," J. Pharm. Sci., 86, 1-12(1997). https://doi.org/10.1021/js9601896
  4. Buckton, G. and Darcy, P., "The Influence of Additives on the Recrystallisation of Amorphous Spray Dried Lactose," Int. J. Pharm., 121, 81-87(1995). https://doi.org/10.1016/0378-5173(95)00009-8
  5. Briggner, L., Buckton, G., Bystrom, K. and Darcy, P., "The Use of Isothermal Microcalorimetry in the Study of Changes in Crystallinity Induced During the Processing of Powders," Int. J. Pharm., 105, 125-135(1994). https://doi.org/10.1016/0378-5173(94)90458-8
  6. Choi, W. S., Kim, H. I., Kwak, S. S., Chung, H. Y., Chung, H. Y., Yamamoto, K., Oguchi, T., Tozuka, Y., Yonemochi, E. and Terada, K., "Amorphous Ultrafine Particle Preparation for Improvement of Bioavailability of Insoluble Drugs: Grinding Characteristics of Fine Grinding Mills," Int. J. Miner. Process, 74S, S165-S172(2004).
  7. Chung, H. Y., Yonemochi, E., Saitoh, T., Terada, K., Tozuka, Y., Oguchi, T., Yamamoto, K., Chung, H. Y. and Choi, W. S., "Factors Affecting the Apparent Solubility of Ursodeoxycholic Acid in the Grinding Process," Int. J. Pharm., 255, 49-56(2003). https://doi.org/10.1016/S0378-5173(03)00083-8
  8. Chung, H. Y., Kwak, S. S., Kim, H. I. and Choi, W. S., "Amorphous Ultrafine Particle Preparation for Improvement of Bioabailability of Insoluble Drugs: Effects of co-grinding of UDCA with SLS," Yakhak Hoeji, 46(2), 102-107(2002).
  9. Yonemochi, E., Oda, K., Saeki, S., Oguchi, T., Nakai, Y. and Yamamoto, K., "Physicochemical Properties of Amorphous Ursodeoxycholic Acid Obtained by Grinding," Chem. Pharm. Bull., 42, 1948-1951(1994). https://doi.org/10.1248/cpb.42.1948
  10. Okonogi, S., Yonemochi, E., Oguchi, T., Puttipiparkhachorn, S. and Yamamoto, K., "Enhanced Dissolution of Ursodeoxycholic Acid from the Solid Dispersion," Drug Dev. Ind. Pharm., 23, 1121-1151(1997).
  11. Ueno, Y., Yonemochi, E., Tozuka, Y., Yamamura, S., Oguchi, T. and Yamamoto, K., "Characterization of Amorphous Ursodeoxycholic Acid Prepared by Spray Drying," J. Pharm. Pharmocol., 50, 1-7(1998).
  12. Yonemochi, E., Ueno, Y., Ohmae, T., Oguchi, T., Nakajima, S. and Yamamoto, K., "Evaluation of Amorphous Ursodeoxycholic by Thermal Methods," Pharm. Res., 14, 802-806(1997).
  13. Cho, H. K., Rhee, K. Y. and Paik, Y. N., "The effect of Milling Time and Speed on the Particle Size of Ibuprofen in the Cryogenic Ball Milling Process," Transactions of KSME-A, 29(7), 1022-1027(2005). https://doi.org/10.3795/KSME-A.2005.29.7.1022
  14. Hwang, D. H., Lee, D. K., Lee, H. S., Choe, D. C., Lee, S. H. and Lee, K. T., "Surface Functionalization of SBA-15 Particles for Ibuprofen Delivery," Korean J. Chem. Eng., 27(4), 1087-1092 (2010). https://doi.org/10.1007/s11814-010-0225-4
  15. Lee, K. T., Lee, D. K., Lee, H. S., Kim, C-K., Wu, Z. and Lee, K. T., "Comparison of Amine-functionalized Mesoporous Silica Particles for Ibuprofen Delivery," Korean J. Chem. Eng., 27(4), 1333-1337(2010). https://doi.org/10.1007/s11814-010-0179-6
  16. Rawlinson, C. F., Williams, A. C., Timmins, P. and Grimsey, I., "Polymer-mediated Disruption of Drug Crystallinity," Int. J. Pharm., 336, 42-48(2007). https://doi.org/10.1016/j.ijpharm.2006.11.029
  17. Rodriguez, R., Alvarez-Lorenzo, C. and Concheiro, A., "Interactions of Ibuprofen with Cationic Polysaccharides in Aqueous Dispersions and Hydrogels Rheological and Diffusional Implications," Eur. J. Pharm. Sci., 20, 429-438(2003). https://doi.org/10.1016/j.ejps.2003.09.004
  18. Schiermeier, S. and Schmidt, P. C., "Fast Dispersible Ibuprofen Tablets," Eur. J. Pharm. Sci., 15, 295-305(2002). https://doi.org/10.1016/S0928-0987(02)00011-8
  19. Rasenack, N., Steckel, H. and Muller, B. W., "Preparation of Microcrystals by in situ Micronization," Powder Technol., 143-144, 291-296(2004). https://doi.org/10.1016/j.powtec.2004.04.021
  20. Kayrak, D., Akman, U. and Hortacsu, O., "Micronization of Ibuprofen by RESS," J. Supercrit. Fluids, 26, 17-31(2003). https://doi.org/10.1016/S0896-8446(02)00248-6
  21. Mallick, S., Pattnaik, S., Swain, K., De, P. K., Saha, A., Ghoshal, G. and Mondal, A., "Formation of Physically Stable Amorphous Phase of Ibuprofen by Solid State Milling with Kaolin," Eur. J. Pharm. Biopharm., 68, 346-351(2008a). https://doi.org/10.1016/j.ejpb.2007.06.003
  22. Mallick, S., Pattnaik, S., Swain, K., De, P. K., Saha, A., Mazumdar, P. and Ghoshal, G., "Physicochemical Characterization of Interaction of Ibuprofen by Solid-state Milling with Aluminum Hydroxide," Drug Dev. Ind. Pharm., 34, 726-734(2008b). https://doi.org/10.1080/03639040801901868
  23. Lee, S. H., Data Analysis of Engineering Statistics using Minitab, revision, Iretec Inc., Kunpo, ROK, 647-778(2008).
  24. Kim, D. S. and Park, Y. S., "Application of Central Composite Design and Response Surface Methodology to the Treatment of Dye Using Electrocoagulation/Flotation Process," J. Korean Soc. Water Qual., 26(1),35-43(2010).
  25. Sim, C. H., "Application of Response Surface Methodology for the Optimization of Process in Food Technology," Food Engineering Progress, 15(2), 97-115(2011).
  26. Park, S. H., Design of Experiments, Minyoungsa, Seoul, 453-504(2005).
  27. Costa, F. O., Pais, A. A. C. C. and Sousa, J. J. S., "Analysis of Formulation Effects in the Dissolution of Ibuprofen Pellets," Int. J. Pharm., 270, 9-19(2004). https://doi.org/10.1016/j.ijpharm.2003.10.002
  28. Malvern, Sample Dispersion & Refractive Index Guide, version 3.1, Malvern Instruments Ltd., England, 2.1-2.14(1997).
  29. Kachrimanis, K. and Malamataris, S., "Compact Size and Mechanical Strength of Pharmaceutical Diluents," Europeon Journal of Pharmaceutical Sciences, 24, 169-177(2005). https://doi.org/10.1016/j.ejps.2004.10.007
  30. Han, B. H., Elements of X-ray Diffraction, Dongmyungsa, Seoul, 231-237(2003).
  31. Cullity, B. D. and Stock, S. R., Elements of X-ray Diffraction, 3rd ed., Prentice Hall, New Jersey, 167-171(2001).
  32. Fell, J. T. and Newton, J. M., "Determination of Tablet Strength by the Diametrical Compression Test," J. Pharm. Sci., 59, 688-691(1970). https://doi.org/10.1002/jps.2600590523
  33. Shioji, Y., Manufacture Technology of Solid Tablet, CMC, Tokyo, Japan, 11-14, 64-66(2003).
  34. Box, G. E. P. and Behnken, D. W., "Some New Three Level Designs for Three Level Designs for the Study of Quantitative Variables," Technometrics, 2(4), 455-475(1960). https://doi.org/10.1080/00401706.1960.10489912
  35. Song, R. K., SAS/STAT Regression, 3rd ed., Freedom Academy, Pajoo, 141-282(2004).
  36. Sim, C. H., "Tensile Strength Variation of Binary Tablets Produced by Planetary Ball Milling," J. Kor. Pharm. Sci., 38(1), 1-8(2008). https://doi.org/10.4333/KPS.2008.38.1.001
  37. Hancock, B. C., Colvin, J. T., Mullarnaney, M. P. and Zinchuk, A. V., "The Relative Densities of Pharmaceutical Powders, Blends, Dry Granulations, and Immediate-release Tablets," Pharm. Technol., 27, 64-80(2003).

Cited by

  1. Comparison of Sampling and Estimation Methods for Economic Optimization of Cumene Production Process vol.52, pp.5, 2014, https://doi.org/10.9713/kcer.2014.52.5.564