• Title/Summary/Keyword: Anti-inflammatory agent

Search Result 665, Processing Time 0.03 seconds

Antioxidant and Anti-Inflammatory Effects of NCW Peptide from Clam Worm (Marphysa sanguinea)

  • Park, Young Ran;Park, Chan-Il;Soh, Yunjo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1387-1394
    • /
    • 2020
  • Clam worms (Marphysa sanguinea) are a rich source of bioactive components such as the antibacterial peptide, perinerin. In the present study, we explored the physiological activities of a novel NCWPFQGVPLGFQAPP peptide (NCW peptide), which was purified from clam worm extract through high-performance liquid chromatography. Tandem mass spectrometry (MS/MS) revealed that NCW was a new peptide with a molecular weight of 1757.86 kDa. Moreover, NCW peptide exhibited significant antioxidant effects, causing a 50% inhibition of DPPH radical at a concentration of 20 μM without showing any cytotoxicity. These were associated with a reduction in the activity of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) in LPS-stimulated RAW264. 7 cells. Furthermore, NCW peptide exhibited anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via inhibition of the abnormal production of pro-inflammatory cytokines including nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). These anti-inflammatory effects of NCW peptide were associated with the inhibition of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Our results therefore suggest that this novel NCW peptide with antioxidant and anti-inflammatory effects could be a good therapeutic agent against inflammation-related diseases.

Inhibitory effects of fenbendazole, an anthelmintics, on lipopolysaccharide-activated mouse bone marrow cells (지질다당류로 활성화된 마우스 골수세포에서 구충제 Fenbendazole의 억제 효과)

  • Park, Seo-Ro;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.3
    • /
    • pp.22.1-22.7
    • /
    • 2021
  • Fenbendazole (FBZ) is a commonly used anthelmintics in veterinary medicine that has recently been found to have anticancer effects in humans. On the other hand, few studies have examined the anti-inflammatory effects of FBZ, and its mechanism is unknown. In this study, mouse bone marrow cells (BMs) were treated with lipopolysaccharide (LPS), a representative inflammation-inducing substance, to generate a situation similar to osteomyelitis in vitro. The effect of FBZ on inflammatory BMs was examined by measuring the metabolic activity, surface marker expression, cell nuclear morphology, and mitochondrial membrane potential (MMP) of BMs. FBZ decreased the metabolic activity and MMP of LPS-treated BMs. Annexin V-fluorescein isothiocyanate/propidium iodide staining and Hoechst 33342 staining showed that FBZ reduced the number of viable cells and induced the cell death of inflammatory BMs. In addition, FBZ reduced the proportion of granulocytes more than B lymphocytes in LPS-treated BMs. Overall, FBZ induces cell death by destabilizing the MMP of LPS-induced inflammatory BMs. In addition to anthelmintic and anticancer agent, FBZ can play a role as an anti-inflammatory agent.

Anti-Inflammatory Effects of Water Chestnut Extract on Cytokine Responses via Nuclear Factor-κB-signaling Pathway

  • Kim, Bora;Kim, Jin Eun;Choi, Byung-Kook;Kim, Hyun-Soo
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.90-97
    • /
    • 2015
  • Water chestnut (Trapa japonica Flerov.) is an annual aquatic plant. In the present study, we showed that the treatment of water chestnut extracted with boiling water resulted in a significant increase 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and decrease the intracellular $H_2O_2$-induced accumulation of reactive oxygen species. In addition, water chestnut extract (WCE) inhibited lipopolysaccharide (LPS)-induced nitric oxide production and suppressed mRNA and protein expression of the inducible nitric oxide synthase gene. The cytokine array results showed that WCE inhibited inflammatory cytokine secretion. Also, WCE reduced tumor necrosis factor-${\alpha}$- and interleukin-6-induced nuclear factor-${\kappa}B$ activity. Furthermore, during sodium lauryl sulfate (SLS)-induced irritation of human skin, WCE reduced SLS-induced skin erythema and improved barrier regeneration. These results indicate that WCE may be a promising topical anti-inflammatory agent.

Anti-inflammatory Effect of Methanol Extract from Safflower Seeds

  • Kim, Hyun-Jin
    • International Journal of Oral Biology
    • /
    • v.41 no.2
    • /
    • pp.83-88
    • /
    • 2016
  • Periodontitis is an inflammatory disease, which destroys the connective tissue and the alveolar bone. Recently, it has been suggested that the effect of natural substances could be induced into an anti-inflammatory environment. However, the effect of Safflower seed extract (SAF-M) associated with periodontitis has not been investigated yet. Therefore, the purpose of this study was to assess the anti-inflammatory effects of SAF-M. Cytotoxicity was assessed through MTS analysis using hGF and hPDL cells. Periodontitis was induced by injecting LPS into gingival tissue on the maxillary molars of rats ($45{\mu}g$ LPS/one time, 3 times a week for 3 weeks). SAF-M was administered daily at 30 mg/kg and 100 mg/kg. Alveolar bone resorption was evaluated through the micro-CT. hGF and hPDL cells showed differential cytotoxicity in response to SAF-M at 5 mg/ml and 1 mg/ml concentrations. Micro-CT showed reduction of the alveolar bone resorption in the SAF-M treatment group. These results suggested that SAF-M is a potential therapeutic agent for periodontitis.

Study on Antioxidant and Anti-inflammatory Activities of Persicaria tinctoria (쪽의 항산화 및 항염증 활성에 대한 연구)

  • Kim, Soo-Jeung;Jang, Tae Won;Kim, Do-Wan;Park, Jae Ho
    • The Korea Journal of Herbology
    • /
    • v.30 no.6
    • /
    • pp.17-24
    • /
    • 2015
  • Objectives : Persicaria tinctoria belongs to the Polygonaceae family and it has been used as the natural dye traditionally. Also, it is well known that the Persicaria tinctoria is used for treating the following symptoms such as fever, inflammation and edema. The purpose of this study is to investigate the effective source of antioxidants and anti-inflammatory agent from various parts of Persicaria tinctoria.Methods : We investigated the antioxidative and anti-inflammatory properties of the Persicaria tinctoria extracts. Antioxidant activities were measured by 1,1-diphenyl-2- picrylhydrazyl (DPPH), 2, 2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity, Fe2+ chelating activity and Reducing power of Persicaria tinctoria extracts. And its inhibitory effect against oxidative DNA damage was evaluated in non-cellular system using φX-174 RF I plasmin DNA. The anti-inflammatory effect of Persicaria tinctoria was measured by using the inhibitory efficacy for the amount of nitric-oxide (NO) produced in LPS induced RAW264.7 cells.Results : The extracts from stem part showed better DPPH scavenging activity compared to those of the leaf and root extracts. Their IC50s were measured as 7.17, 144.40 and 165.07 ug/ml, respectively. These results were similar to that of ABTS radical scavenging assay and reducing power. Also, Persicaria tinctoria showed the protective effects of DNA damage against oxidative stress and anti-inflammatory effect by suppression of NO production in LPS induced RAW264.7 cells.Conclusions : These results showed that various parts of Persicaria tinctoria can be used as an effective source of antioxidants and anti-inflammatory agents via antioxidative activities and anti-inflammatory effect.

Biological effects of zinc oxide nanoparticles on inflammation

  • Kim, Min-Ho
    • CELLMED
    • /
    • v.6 no.4
    • /
    • pp.23.1-23.6
    • /
    • 2016
  • With the rapid developments in nanotechnology, an increasing number of nanomaterials have been applied in various aspects of our lives. Recently, pharmaceutical nanotechnology with numerous advantages has growingly attracted the attention of many researchers. Zinc oxide nanoparticles (ZnO-NPs) are nanomaterials that are widely used in many fields including diagnostics, therapeutics, drug-delivery systems, electronics, cosmetics, sunscreens, coatings, ceramic products, paints, and food additives, due to their magnetic, catalytic, semiconducting, anti-cancer, anti-bacterial, anti-inflammatory, ultraviolet-protective, and binding properties. The present review focused on the recent research works concerning role of ZnO-NP on inflammation. Several studies have reported that ZnO-NP induces inflammatory reaction through the generation of reactive oxygen species by oxidative stress and production of inflammatory cytokines by activation of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$). Meanwhile, other researchers reported that ZnO-NP exhibits an anti-inflammatory effect by inhibiting the up-regulation of inflammatory cytokines and the activation of $NF-{\kappa}B$, caspase-1, $I{\kappa}B$ $kinase{\beta}$, receptor interacting protein2, and extracellular signal-regulated kinase. Previous studies reported that size and shape of nanoparticles, surfactants used for nanoparticles protection, medium, and experimental conditions can also affect cellular signal pathway. This review indicated that the anti-inflammatory effectiveness of ZnO-NP was determined by the nanoparticle size as well as various experimental conditions. Therefore, the author suggests that pharmaceutical therapy with the ZnO-NP is one of the possible strategies to overcome the inflammatory reactions. However, further studies should be performed to maximize the anti-inflammatory effect of ZnO-NP to apply as a potential agent in biomedical applications.

Anti-Inflammatory and Antioxidative Effects of Gracilaria textorii Ethanol Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells (사람 치은섬유모세포에서 잎꼬시래기 에탄올 추출물의 항염증 및 항산화 효과)

  • Park, Chungmu;Yoon, Hyunseo
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.4
    • /
    • pp.61-69
    • /
    • 2019
  • Purpose : Human gingival fibroblast cell is one of the the main cell types in periodontal tissue, which they can show anti-inflammatory activity through the production of numerous lines of inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukins. Porphyromonas gingivalis, one of the oral pathogens, has reported to play a critical role in the development of periodontal diseases. This study aimed to investigate anti-inflammatory and antioxidative activities of Gracilaria textorii ethanol extract (GTEE) in P. gingivalis derived lipopolysaccharide (LPS-PG) stimulated human gingival fibroblast (HGF)-1 cell line. Methods : In order to analyze anti-inflammatory and antioxidative activities of GTEE in HGF-1 cell line, NOS enzyme activity, expression levels of iNOS, COX-2, NAD(P)H quinone dehydrogenase (NQO)1 and their transcription factors were estimated by Griess reaction and western hybridization. Results : LPS-PG induced overexpression of iNOS and COX-2, which was significantly attenuated by GTEE treatment in a dose-dependent manner without any cytotoxicity. In addition, intracellular NOS activity was in accordance with the result of iNOS expression. Due to important role in the regulation of inflammatory responses, phosphorylated status of p65 and c-jun, each subunit of nuclear factor (NF)-κB and activator protein (AP)-1, was also dose-dependently ameliorated by GTEE treatment. One of phase II enzymes, NQO1, and its transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), were analyzed since elevated phase II enzyme expression inhibited inflammatory response, which was significantly elevated by GTEE treatment in HGF-1 cell line. Conclusion : In conclusion, GTEE mitigated LPS-PG-stimulated inflammatory responses by attenuating NF-κB and AP-1 activation as well as accelerating NQO1 and Nrf2 expression in HGF-1 cell line. These results indicate that GTEE might be utilized a promising strategy for potential anti-inflammatory agent in periodontal diseases.

Characterization of Biocompatible Lipid-Based Vesicles Contained with Medicinal Herb Extracts

  • Lee, Kyu-Jin;Park, Sun young;Park, Geuntae
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.853-863
    • /
    • 2018
  • In order to increase the medicinal herbs efficiency of drug delivery, vesicles contained with medicinal herbs were prepared by phosphatidylcholines and surface active agent. Vesicles loaded with medicinal herbs were characterized by UV-spectroscopy, Zetasizer. The antioxidant activity of vesicles was measured by DPPH assay and ABTS radical scavenging assays. Also, an analysis was conducted to determine the effects of anti-inflammatory of vesicles contained medicinal herbs. In addition, the whitening effects of vesicles contained medicinal herbs extract were studied via tyrosinase inhibition assay. The results of vesicles were as follows. Vesicles appeared an average diameter of approximatively 164-599 nm. All studied vesicles contained with medicinal herbs showed antioxidant, anti-inflammatory and whitening effects in a dose-dependent manner. Therefore, this experiment achieves its purpose of synthesizing of vesicles. In conclusion, we recommended that the vesicles loaded with medicinal herbs have ability for anti-aging materials. Specifically, it will apply to cosmetic ingredients.

The Inhibitory Effect of Gooseberry on DNCB-induced Atopic Dermatitis in vivo and in vitro

  • Kim, Su-Jin
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.349-356
    • /
    • 2018
  • Generally, berry fruits have various pharmacological activities such as anti-inflammation, anti-oxidation and anti-cancer effects. The effects of gooseberry, a berry fruits, on atopic dermatitis (AD) have not been widely examined. The aim of this present study is to investigate whether gooseberry modulates AD. We examined the pharmacological effects of gooseberry on 2, 4-dinitrochlorobenzene (DNCB)-induced AD symptoms in mice. To determine the anti-atopic mechanism of gooseberry, we investigated its effects on the production of inflammatory cytokines and activation of nuclear factor-${\kappa}B$ in PMA + ionophore -stimulated human mast cells (HMC-1). The results demonstrated that gooseberry attenuated AD clinical symptoms such as erythema, edema and dryness as well as histamine and IgE serum levels in DNCB-induced AD model mice. Additionally, gooseberry suppressed the expression of inflammatory cytokines and activation of nuclear factor-${\kappa}B$ in stimulated HMC-1. These findings demonstrate that gooseberry is potential agent for treating AD and allergic inflammation.

Xylitol Mitigate Neutrophil Inflammatory Response Against Porphyromonas gingivalis Infection

  • Na, Hee Sam;Song, YuRi;Choi, Yoon Hee;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.43 no.3
    • /
    • pp.141-146
    • /
    • 2018
  • Periodontitis is generally a chronic disorder characterized by breakdown of tooth-supporting tissues, producing dentition loss. Porphyromonas gingivalis (P. gingivalis), a Gramnegative anaerobic rod, is one of the major pathogens associated with periodontitis. Neutrophils are first line defense cells in the oral cavity that play a significant role in inflammatory response. Xylitol is a known anti-caries agent and has anti-inflammatory effects. In this study, we conducted experiments to evaluate anti-inflammatory effects of xylitol on P. gingivalis infected neutrophils for possible usage in prevention and treatment of periodontal infections. P. gingivalis was intraperitoneally injected and peritoneal lavage was collected for cytokine determination. For in vitro study, neutrophils were collected from mouse peritoneal cells after zymosan injection or bone marrow cells. Neutrophils were stimulated with live P. gingivalis and ELISA was used to determine the effect of xylitol on P. gingivalis induced cytokine production. $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ concentration and neutrophil population in the peritoneal lavage was increased in P. gingivalis-infected mouse. Peritoneal cells infected with live P. gingivalis revealed significantly increased production of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ at multiplicity of infection of 10. Neutrophils from bone marrow and peritoneal lavage revealed increased production of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$. Xylitol significantly mitigated P. gingivalis induced cytokine production in neutrophils. Findings indicate that xylitol is an anti-inflammatory agent in neutrophils infected with live P. gingivalis, that suggests its use in periodontitis management.