• 제목/요약/키워드: Anti-diabetic effect

검색결과 346건 처리시간 0.031초

Anti-diabetic Effect and Mechanism of Korean Red Ginseng in C57BL/KsJ db/db Mice

  • Yuan, Hai-Dan;Shin, Eun-Jung;Chung, Sung-Hyun
    • Journal of Ginseng Research
    • /
    • 제32권3호
    • /
    • pp.187-193
    • /
    • 2008
  • The present study was designed to investigate the anti-diabetic effect and mechanism of Korean red ginseng in C57BL/KsJ db/db mice. The db/db mice were divided into three groups: diabetic control group (DC), Korean red ginseng group (KRG, 100 mg/kg) and metformin group (MET, 300 mg/kg), and treated with drugs once per day for 10 weeks. Compared to the DC group, fasting blood glucose levels were decreased by 19.8% in KRG-, 67.7% in MET-treated group. With decreased plasma glucose and insulin levels, the insulin resistance index of the KRG-treated group was reduced by 27.6% compared to the DC group. The HbA1c levels in KRG and MET-treated groups were also decreased by 11.0% and 18.9% compared to that of DC group, respectively. Plasma triglyceride and non-esterified fatty acid levels were decreased by 18.8% and 16.8%, respectively, and plasma adiponectin and leptin levels were increased by 20.6% and 12.1%, respectively, in the KRG-treated group compared to those in DC group. Histological analyses of the liver and fat tissue of mice treated with KRG revealed significantly decreased number of lipid droplets and decreased size of adipocytes compared to the DC group. From the pancreatic islet double-immunofluorescence staining, we observed KRG has increased insulin contents, but decreased glucagon production. To elucidate action mechanism of KRG, effects on AMP-activated protein kinase (AMPK) and its downstream target proteins responsible for fatty acid oxidation and gluconeogenesis were explored in the liver. KRG activated AMPK and acetyl-coA carboxylase (ACC) phosphorylations, resulting in stimulation of fatty acid oxidation. KRG also caused to down regulation of SREBP1a and its target gene expressions such as FAS, SCD1 and GPAT. In summary, our results suggest that KRG exerted the anti-diabetic effect through AMPK activation in the liver of db/db mice.

Toosendan Fructus ameliorates the pancreatic damage through the anti-inflammatory activity in non-obese diabetic mice

  • Roh, Seong-Soo;Kim, Yong-Ung
    • 대한본초학회지
    • /
    • 제30권2호
    • /
    • pp.1-9
    • /
    • 2015
  • Objectives : The present study was conducted to examine whether Toosendan Fructus has an ameliorative effect on diabetes-induced alterations such as oxidative stress and inflammation in the pancreas of non-obese diabetic (NOD) mice, a model of human type I diabetes. Methods : Extracts of Toosendan Fructus (ETF) were administered to NOD mice at three doses (50 mg/kg, 100 mg/kg and 200 mg/kg). Mice at 18 weeks of age were measured glucose tolerance using intraperitoneal glucose tolerance test. After 28 weeks of ETF treatment, glucose, total cholesterol (TC), triglyceride (TG), and proinflammatory cytokines in serum, western blot analyses and a histopathological examination in pancreas tissue, and on the onset of diabetes were investigated. Results : The results showed that levels of glucose, glucose tolerance, TC, TG, interferon-${\gamma}$, interleukin (IL)-1 ${\beta}$, IL-6, and IL-12 in serum were down-regulated, while IL-4, IL-10, SOD, and catalase significantly increased. In addition, ETF improved protein expression of proinflammatory mediaters (such as cyclooxygenase-2, and inducible nitric oxide synthase) and a proapoptotic protein (caspase-3) in the pancreatic tissue. Also, in the groups treated with ETF (100 mg/kg or 200 mg/kg), insulitis and infiltration of granulocytes were alleviated. Conclusions : Based on these results, the anti-diabetic effect of ETF may be due to its anti-inflammatory and antioxidant effect. Our findings support the therapeutic evidence for Toosendan Fructus ameliorating the development of diabetic pancreatic damage via regulating inflammation and apoptosis. Our future studies will be focused on the search for active compounds in these extracts.

정상 및 당뇨 흰쥐에서 주령과 절식에 의한 양파의 혈당조절작용 변화 (Influence of Age and Fasting on the Anti-hyperglycemic Effect of Onion in Normal and Diabetic rat)

  • 문창현;정이숙;김민화;이수환;백은주;박세원
    • Biomolecules & Therapeutics
    • /
    • 제5권4호
    • /
    • pp.364-368
    • /
    • 1997
  • Onion (Allium cepa Linn) has been reported to have hypoglycemic activity in human and several animal models. In the present study, we performed intraperitoneal glucose tolerance test (IPGTT) in young (1.5mo) and aged (5 mo) rats treated with onion in order to determine whether aging can influence on the anti-hy-perglycemic effect of onion. In addition, we investigated the hypoglycemic effect of onion in streptozotocin- induced diabetic rats treated with aqueous extracts of onion (500 mg/kg, i.p., daily) for 4 weeks. Blood glucose level was determined in fasted and fed rats by using a glucometer (Johnson & Johnson). In glucose tolerance test, blood glucose level was maximally increased 15 min after glucose load (2 g/kg, i.p.), and recovered to the basal level 3 hr after glucose challenge in young and old rats. The maximum blood glucose levels of young and aged rat were 184$\pm$7.49 and 225.2$\pm$ 12.55 mg/dl, respectively. A single i.p. injection of aqueous extract of onion (1 g/kg) 30 min before glucose challenge significantly decreased blood glucose levels at 15, 30, 60, 90 min after glucose load in aged rats, while the administration of onion did not show any significant effect in young rats. In onion-treated diabetic rats, significant hypoglycemic effect (p<0.05) was observed, and the effect was greater in fasted rats than in fed. In conclusion, these results suggest that anti-hyperlycemic effect of onion can be changed by age and fasting.

  • PDF

삼기지황탕가음양곽이 Streptozotocin으로 유발된 흰쥐의 당뇨병성(糖尿病性) 신증(腎症)에 미치는 영향 (Beneficial Effect of Epimedii Herba combined Samgijiwhang-Tang on Diabetic Nephropathy Rats)

  • 윤관희;김용성
    • 대한한의학회지
    • /
    • 제27권1호
    • /
    • pp.47-56
    • /
    • 2006
  • The present study was carried out to investigate the preventive effect of Epimedii Herba combined Samgijiwhang-Tang(SJTE) on streptozotocin(STZ)-induced diabetic nephropathy. SJTE was given to rats with oral administration. The experimental animals were divided into normal group of rats, control group of STZ-induced diabetic rats, and sample group with SJTE administration. Experimental diabetic nephropathy was induced by the injection of STZ(60mg/kg) to the rat via the peritoneum. The effect of SJTE on STZ-induced diabetic nephropathy was observed by measuring the serum level of insulin, glucose, creatinine and BUN. Urine secretion of albumin for 24 hours and urine level of glucose measures too. Anti-oxidative stress of STZ administration in living body was estimated by measuring lipid peroxide in cortex of kidneys. STZ induced increase of serum glucose. creatinine, urine albumin secretion and renal cortical lipid peroxidation were lowered by SJTE administration. In conclusion, the SJTE treatment showed protective effect on rat diabolic nephropathy model, and action mechanism of the effect was thought to be concerned with internal glucose metabolism.

  • PDF

Beneficial Effect of Lespedeza cuneata (G. Don) Water Extract on Streptozotocin-induced Type 1 Diabetes and Cytokine-induced Beta-cell Damage

  • Kim, Min Suk;Sharma, Bhesh Raj;Rhyu, Dong Young
    • Natural Product Sciences
    • /
    • 제22권3호
    • /
    • pp.175-179
    • /
    • 2016
  • The aim of this study was to evaluate the anti-diabetic effects of the water extract of Lespedeza cuneata (LCW) using rat insulinoma (RIN) m5F cells and streptozotocin (STZ)-induced diabetic rats. The effect of LCW on the protection of pancreatic beta cells was assessed using MTT assay, and nitric oxide production was assessed using Griess reagent. STZ-induced diabetic rats were treated with 100 and 400 mg/kg body weight of LCW for 5 weeks. In results, LCW significantly protected cytokine-induced toxicity and NO production, and increased insulin secretion in RINm5F cells. LCW significantly decreased serum blood glucose, thiobarbituric acid reactive substances (TBARS), blood urea nitrogen (BUN) and advanced glycation end products (AGEs) levels, and renal fibronectin expression in STZ-induced diabetic rats. Also, LCW effectively improved BW loss in STZ-induced diabetic rats. Thus, our results suggest that LCW has a beneficial effect on cytokine-induced pancreatic beta cell damage and biomarkers of diabetic complication in hyperglycemic rats.

$\beta$-Carotene 첨가식이가 당뇨쥐의 지질과산화물 수준과 항산화효소 활성에 미치는 영향 (Effects of $\beta$-Carotene Supplementation on Lipid Peroxide Levels and Antioxidative Enzyme Activities in Diabetic Rats)

  • 이완희;천종희
    • Journal of Nutrition and Health
    • /
    • 제36권7호
    • /
    • pp.675-683
    • /
    • 2003
  • This study investigated the effect of dietary $\beta$-carotene supplementation on lipid peroxidation and anti oxidative enzyme activity as indices of oxidative stress in diabetic rats. Fifty Sprague-Dawley male rats aging 7 weeks were used as experimental animals, which were divided into the non-diabetic control group and the diabetic group. The diabetic group received an intraperitoneal injection with streptozotocin to induce diabetes. Then the diabetic rats were divided into four dietary groups which contained different amounts of $\beta$-carotene; 0%, 0.002%, 0.02%, or 0.2% of the diet. The diabetic rats were fed the experimental diets and the non-diabetic rats were fed the basal diet without $\beta$-carotene supplementation for 2 weeks and then sacrificed. The diabetic group had a significantly higher blood glucose level than the non-diabetic group. However, blood glucose level were not significantly changed by the level of dietary $\beta$-carotene supplementation. Compared to the non-diabetic control group, the diabetic control group indicated a significant increase of plasma thiobarbituric acid reactive substance (TBARS). Liver TBARS level also tended to be higher in diabetic control group, although it was not significant. The $\beta$-carotene supplementation did not reduce plasma TBARS level. However, Liver TBARS level was significantly decreased when 0.02% or more $\beta$-carotene was supplemented in the diet. The liver lipofuscin level in the diabetic control group was higher than in the non-diabetic control group, but the effect of $\beta$-carotene supplementation did not show any differences. Superoxide dismutase activity was significantly lower in the diabetic group, but it was increased in groups receiving 0.02% or more $\beta$-carotene. Compared to the non-diabetic control group, lower activities of catalase and glutathione peroxidase were observed in the diabetic control group, although it was not significant. Catalase and glutathione peroxidase activities tended to increase as the levels of $\beta$-carotene supplementation increased, although it was not statistically significant. Therefore, it seems that dietary $\beta$-carotene supplementation might reduce diabetic complications by partly decreasing the lipid peroxidation and increasing the activity of antioxidative enzyme in diabetes.

Anti-diabetic effects of water extract from the dietary mushroom Neolentinus lepideus in type 2 diabetic db/db mice

  • Yun, Ui jeong;Jung, Hyesun;Park, Kye Won;Park, Ki-Moon
    • 한국버섯학회지
    • /
    • 제15권3호
    • /
    • pp.99-103
    • /
    • 2017
  • The objective of this study was to determine the anti-diabetic effect of the water extract of Neolentinus lepideus in a diabetic mouse model. Seven-week-old C57BL/KsJ-db/db mice were fed either a control diet (CD) or diet supplemented with 1% or 5% of N. lepideus water extract (NLWE1 or NLWE5) for 10 weeks. Oral administration of NLWE significantly decreased the body weight gain compared to that of CD-fed group. Mice in the NLWE group had significantly lower levels of fasting serum glucose, fatty acids, and low-density lipoprotein cholesterol compared to those in the control group. These effects were accompanied by reduced fatty liver and improved glucose tolerance in the NLWE group. Taken together, these results suggest that N. lepideus might have potential as a dietary supplement to control diabetes.

강당보음방이 자가면역 당뇨모델인 NOD mice의 혈당강하에 미치는 영향 (Effect of Kangdangboeumbang on the Anti-diabetic Activity in NOD Mice)

  • 송호철;김성훈
    • 동의생리병리학회지
    • /
    • 제18권6호
    • /
    • pp.1628-1634
    • /
    • 2004
  • This study was aimed to verify the anti-diabetic activity of Kangdangboeumbang(KBB) in NOD mice which is Insulin Dependent Diabetes Mellitus(IDDM). The reduction of blood glucose after oral administration between 14 weeks by 2 weeks period to a NOD mice in KBB extract treatment group was showed from 7 day after comparing with control group. KBB extract treatment group increasd insulin secretion amount of serum than control group and decreased IFN­γ production. The pancreatic β-cells is destroyed by Th1-dependent autoimmune disease in NOD mice. KBB extract treatment group intercepted the progress of edematous islet controlling inflammatory mononuclear cells of infiltration that also destruction of pancreatic β-cells electively in a NOD mice.

Oxidative and Anti-oxidative Status in Blood of Streptozotocin-induced Diabetic Piglets

  • Inoue, H.;Murakami, H.;Matsumoto, M.;Kaji, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권6호
    • /
    • pp.818-824
    • /
    • 2011
  • Eight LW${\times}$D crossbred, castrated weanling piglets were used to examine the effect of hyperglycemia by streptozotocin (STZ)-injection on oxidative and anti-oxidative status in circulating fluid. Every two of the eight piglets were intravenously administrated STZ at a dose of 0 (control), 100, 125 or 150 mg/kg BW, respectively, and on 15th day after the STZ-injection, some markers of the oxidative stress in circulating fluid were measured to evaluate oxidative and anti-oxidative status in the piglets. First, piglets with hyperglycemia were selected from the STZ-injected piglets as measured by the levels of fasting plasma glucose (FPG) during 2 weeks after the STZ-injection. Additionally, data obtained from the intravenous glucose tolerance test (IVGTT) on 14th day were analyzed. Secondly, the data obtained in this experiment were divided into the control group and the hyperglycemic (STZ) group, and compared. The FPG level or area under curve (AUC) for plasma glucose during the IVGTT in the STZ-induced diabetic piglets was slightly significantly (FPG, p = 0.070; AUC, p = 0.072) higher compared with the control. On the other hand, the plasma level of lipid peroxidation in the STZ-induced diabetic piglets was significantly (p<0.05) higher compared with the control. These results raise the possibility that STZ-induced diabetic piglets produced in this study can be used as a diabetic animal model to research the pathogenic mechanisms or therapy of complications in diabetic mellitus.