• Title/Summary/Keyword: Anti-diabetic drug

Search Result 66, Processing Time 0.023 seconds

Anti-hyperglycemic effect and single oral toxicity of SPP003

  • Kim, Yong-Hyuk;Eum, Hyun-Ae;Lee, Woo-Yong;Lee, Sang-Ho;Kim, Hyun-Young
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2002.07a
    • /
    • pp.219-219
    • /
    • 2002
  • The SPP003 is a mixture of water extract from Schizandrae Fructus, Poligoni multiflori Radix, Ginseng Radix Akba and Hoelen. The aim of this study was to investigate the anti-hyperglycemic effect of SPP003 in normal and streptozotocin (STZ)-induced diabetic rats, and to monitor the toxicity of SPP003. Oral glucose tolerance test (OGTT) was performed after oral administration of SPP003 100, 300, 600 and 900 mg/kg in normal rats. Blood glucese concentration was measured at -30 min (vehicle, SPP003 or tolbutamide 60 mg/kg, 0 min (glucose treatment), 60, 120 and 180 min. Rats were administerd STZ 65mg/kg (0.1M citrate buffer, pH 4.5) intraperitoneally to induce diabetes and administered vehicle, Spp003 (100, 300 and 600 mg/kg) or tolbutamide (60 mg/kg) orally once a day for 4 weeks. Blood glucose level was measured a 0, 4, 7, 14, 21 and 29 day after initial drug administration. A single oral toxicity of SPP003 was studied in Sprague-Dawley rats of both sexes. In this study, rats were administered with doses of 1, 2 and 5 g/kg of SPP003. In glucose tolerance test, SPP003 900 mg/kg markedly decreased glucose concentration at 1 hr after glucose treatment. Blood glucose levels were much higher in STZ-diabetic rats. These increases were significantly attenuated by SPP003 600 mg/kg. SPP003 did not show any signigicant toxicity. These findings suggest that SPP003 has hypoglycemic properties in STZ-diabetic rats.

  • PDF

Thermographic Changes by Administering Gabapentin in Neuropathic Pain -A report of three cases- (신경병증성 통증 치료시 Gabapentin 투여에 따른 제통 효과와 체열상의 변화 -증례 보고-)

  • Lee, Jang-Won;Kim, Jung-Soon;Bae, Duck-Ku;Park, Wook
    • The Korean Journal of Pain
    • /
    • v.14 no.1
    • /
    • pp.98-103
    • /
    • 2001
  • Neuropathic pain originating from multiple condition of nerve cell injury is common, but is difficult to treat. Even though many drugs such as anti-convulsants, anti-depressants, NSAIDs, opioids have been used, their clinical analgesic action were not satisfactory due to occur severe side effects. Gabapentin was introduced in 1994 as a novel antiepileptic drug and has been used to treat partial seizure. After 1995 gabapentin treatment for reflex sympathetic dystrophy (RSD) started, 45% of the reports about the analgesic efficacy of gabapentin were restricted to the treatments of non-epileptic pain syndrome. This drug is preferred to treat neuropathic pain because of a lower incidence of its side effects than those of other anti-convulsants and anti-depressants. For evaluating it's analgesic efficacy, the changes in the patients' subjective pain intensity was measured by the score on the visual analogue scale (VAS) and patient's objective pain intensity by measuring the skin temperature via infrared thermography were investigated respectively. Side effects of gabapentin were look into. We observed successful relief of neuropathic pain in the three patients which included post-herpetic neuraligia, complex regional pain syndrome (CRPS) and diabetic neuropathic pain, and the side effects of gabapentin were at acceptable levels.

  • PDF

Poly(Dimethylaminoethyl Methacrylate)-Based pH-Responsive Hydrogels Regulate Doxorubicin Release at Acidic Condition

  • Lee, Seung-Hun;You, Jin-Oh
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.202-214
    • /
    • 2015
  • Stimuli-responsive biomaterials that alter their function through sensing local molecular cues may enable technological advances in the fields of drug delivery, gene delivery, actuators, biosensors, and tissue engineering. In this research, pH-responsive hydrogel which is comprised of dimethylaminoethyl methacylate (DMAEMA) and 2-hydroxyethyl methacrylate (HEMA) was synthesized for the effective delivery of doxorubicin (Dox) to breast cancer cells. Cancer and tumor tissues show a lower extracellular pH than normal tissues. DMAEMA/HEMA hydrogels showed significant sensitivity by small pH changes and each formulation of hydrogels was examined by scanning electron microscopy, mechanical test, equilibrium mass swelling, controlled Dox release, and cytotoxicity. High swelling ratios and Dox release were obtained at low pH buffer condition, low cross-linker concentration, and high content of DMAEMA. Dox release was accelerated to 67.3% at pH 5.5 for 6-h incubation at $37^{\circ}C$, while it was limited to 13.8% at pH7.4 at the same time and temperature. Cell toxicity results to breast cancer cells indicate that pH-responsive DMAEMA/HEMA hydrogels may be used as an efficient matrix for anti-cancer drug delivery with various transporting manners. Also, pH-responsive DMAEMA/HEMA hydrogels may be useful in therapeutic treatment which is required a triggered release at low pH range such as gene delivery, ischemia, and diabetic ketoacidosis.

Anti-glycemic effect of L-carnosine in streptozotocin-induced diabetic mice (Streptozotocin으로 유도된 당뇨 마우스에서 L-carnosine의 혈당강하 효과)

  • Hue, Jin-Joo;Kim, Jong-Soo;Kim, Jun-hyeong;Nam, Sang Yoon;Yun, Young Won;Jeong, Jae-Hwang;Lee, Beom Jun
    • Korean Journal of Veterinary Research
    • /
    • v.50 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • Carnosine is a dipeptide $(\beta-alanyl-L-histidine)$ found in mammalian brain, eye, olfactory bulb and skeletal muscle at high concentrations. Its biological functions include antioxidant and anti-glycation activities. The objectives of this study were to investigate anti-diabetic effects of carnosine as determined by blood glucose levels, glucose tolerance test (GTT), glycosylated hemoglobin, and serum biochemical and lipid levels in streptozotocin-induced diabetic mice. There were five experimental groups including normal (ICR mice), control (saline), and three groups of carnosine at doses of 6, 30, and 150 mg/kg b.w.. Carnosine was orally administered to the diabetic mice everyday for 12 weeks. There was no significant difference in body weight changes in carnosine-treated groups compared to the control. The treatments of carnosine at the dose of 6 mg/kg significantly decreased the blood glucose level compared with the control at 2 and 4 weeks. The treatments of carnosine at the doses of 6 and 30 mg/kg significantly decreased the blood glucose levels in GTT and glycosylated hemoglobin compared with the control. Carnosine significantly increased total proteins compared with the control. Carnosine at the dose of 6 mg/kg significantly decreased total cholesterol and triglyceride in the serum compared to the control. These results suggest that carnosine at a low level has a hypoglycermic effect resulting from reduction of blood glucose and that a carnosine-containing diet or drug may give a benefit for controlling diabetes mellitus in humans.

Role of autophagy in metformin-induced apoptosis of H4IIE hepatocellular carcinoma cells (Metformin에 의해 발생한 H4IIE 간암세포의 세포사멸 과정에서 자가포식의 역할)

  • Baek, Keunho;Park, Deokbae
    • Journal of Medicine and Life Science
    • /
    • v.17 no.2
    • /
    • pp.41-46
    • /
    • 2020
  • Metformin, a predominantly prescribed anti-diabetic drug for decades, has gained new insights for its anti-tumor activity in a variety of cancer cells. Our previous studies also showed the obvious pro-apoptotic activity of metformin and the underlying action mechanisms in hepatocellular carcinoma cells. Together with apoptosis, autophagy is a crucial intracellular process to determine the survival or death of cells under some stressful environments. The present study aimed to determine the role of autophagy in metformin-induced death of H4IIE hepatocellular carcinoma cells. Metformin blocked the formation of autophagosome and the expression of LC3A, generally described as a biomarker of autophagy. Inhibition of AMPK reversed the metformin-induced blockade of autophagy. Antioxidant (NAC) suppressed the metformin-induced cell death but not affected LC3A. The inhibition of protein kinase C totally restored the metformin-suppressed expression of LC3A. In summary, our present study suggests that autophagy is an anti-apoptotic player in metformin-induced apoptosis in H4IIE cells.

Anti-Platelet Drug Resistance in the Prediction of Thromboembolic Complications after Neurointervention

  • Ryu, Dal-Sung;Hong, Chang-Ki;Sim, Yoo-Sik;Kim, Chang-Hyun;Jung, Jin-Young;Joo, Jin-Yang
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.4
    • /
    • pp.319-324
    • /
    • 2010
  • Objective : The aim of this study was to analyze the correlation between thromboembolic complications and anti platelet drugs before and after neurointervention. Methods : Blood samples and radiographic data of patients who received a neurointervention (coil embolization, stent placement or both) were collected prospectively. Rapid platelet function assay-aspirin (RPFA-ASA) was used to calculate aspirin resistance in aspirin reaction units (ARU). For clopidogrel resistance, a P2Y12 assay was used to analyze the percentage of platelet inhibition. ARU > 550 and platelet inhibition < 40% were defined as aspirin and clopidogrel resistance, respectively. Results : Both aspirin and clopidogrel oral pills were administered in fifty-three patients before and after neurointerventional procedures. The mean resistance values of all patients were 484 ARU and < 39%. Ten (17.0%) of 53 patients showed resistance to aspirin with an average of 597 ARU, and 33 (62.3%) of 53 patients showed resistance to clopidogrel with an average of < 26%. Ten patients demonstrated resistance to both drugs, 5 of which suffered a thromboembolic complication after neurointervention (mean values : 640 ARU and platelet inhibition < 23%). Diabetic patients and patients with hypercholesterolemia displayed mean aspirin resistances of 513.7 and 501.8 ARU, and mean clopidogrel resistances of < 33.8% and < 40.7%, respectively. Conclusion : Identifying individuals with poor platelet inhibition using standard regimens is of great clinical importance and may help prevent cerebral ischemic events in the future. Neurointerventional research should focus on ideal doses, timing, choices, safety, and reliable measurements of anti platelet drug therapy, as well as confirming the clinical relevance of aggregometry in cerebrovascular patients.

A Prospective study of Anti-Diabetic activity of Lagerstroemia speciosa Linn.

  • Merlin Jayalal, L.P.
    • Journal of Integrative Natural Science
    • /
    • v.5 no.2
    • /
    • pp.100-106
    • /
    • 2012
  • Herbal medicines have been used since the dawn of civilization to maintain health and to treat diseases. Diabetes mellitus is one of the leading cause of death in many developed countries. The incidence of diabetes is increasing at an alarming rate in India. It was estimated that India which had 19.4 million diabetes in 1995 is expected to register a near threefold increase by. Many plants reported to be useful for the treatment of diabetes mellitus in ayurvedic medicine, are being tested for their hypoglycemic activity in experimental animals Lagerstroemia flos- reginae is one such plant commonly found as shade trees in Kerala. In Ayurveda both root and leaves are used in the treatment of diabetes. The main objective of this study was to assess the antidiabetic effect of the alcohol extracted leaves of Lagerstroemia flos- reginae in alloxan induced diabetic rats in terms of controlling blood glucose level, lipid profile, bilirubin, uric acid in serum and lipid peroxides and glutathione in the liver of the experimental animals. The present study has been undertaken to observe the protective effect of the active constituents of Lagerstroemia flos- reginae leaf extracts against alloxan induced diabetes in experimental animal model. The activity of the active constituents was compared with Daonil -a standard drug.

α-Glucosidase Inhibitory Activity of Phenolic Compounds Isolated from the Stems of Caesalpinia decapetala var. japonica

  • Le, Thi Thanh;Ha, Manh Tuan;Hoang, Le Minh;Vu, Ngoc Khanh;Kim, Jeong Ah;Min, Byung Sun
    • Natural Product Sciences
    • /
    • v.28 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • In our study, sixteen known phenolic compounds, including quercetin (1), methyl gallate (2), caesalpiniaphenol C (3), 8S,8'S,7'R-(-)-lyoniresinol (4), 7,3',5'-trihydroxyflavanone (5), sappanchalcone (6), sappanone A (7), taxifolin (8), fisetin (9), fustin (10), (+)-catechin (11), brazilin (12), 3,4,5-trimethoxyphenyl β-ᴅ-glucopyranoside (13), 1-(2-methylbutyryl)phloroglucinol-glucopyranoside (14), (+)-epi-catechin (15), and astragalin (16) and one mixture of two conformers of protosappanin B (17/18) were isolated from the stems of Caesalpinia decapetala var. japonica. Their structures were elucidated based on a comparison of their physicochemical and spectral data with those of literature. To the best of our knowledge, this represents the first isolation of compounds 3, 4, 8, 9, and 10 from C. decapetala and compounds 13 and 14 from the Caesalpinia genus. All the isolated compounds were evaluated for their inhibitory effect against the α-glucosidase enzyme. Among them, two flavonols (1 and 9), one chalcone (6), and one homoisoflavanone (7) exhibited an inhibitory effect on α-glucosidase action with an IC50 range value of 5.08-15.01 μM, stronger than that of the positive control (acarbose, IC50 = 152.22 μM). Kinetic analysis revealed that compounds 1 and 9 showed non-competitive α-glucosidase inhibition, while the inhibition type was mixed for compounds 6 and 7.

The Anti-diabetic Effects of Kocat-D1 on Streptozotocin-Induced Diabetic Rats (Kocat-D1의 streptozotocin으로 유도한 당뇨모델에 대한 항당뇨 활성)

  • Won, Hye-Jin;Lee, Hyun-Sun;Kim, Jong-Tak;Hong, Chung-Oui;Koo, Yun-Chang;Lee, Kwang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.204-209
    • /
    • 2010
  • This study was conducted to investigate the anti-diabetic activity of Kocat-D1, which is widely used in traditional medicine to treat diabetes in Shandong, China. Sprague Dawley rats (8 weeks of age) were separated into 4 groups: a normal control, streptozotocin (STZ)-induced diabetic rat group (DM control), Kocat-D1-1 (diabetic rat treated with 0.25 g/kg/day hot water extract), and Kocat-D1-2 (diabetic rat treated with 1 g/kg/day hot water extract). After eight weeks of treatment, the fasting blood glucose levels of the Kocat-D1-1 ($334.3{\pm}32.9\;mg/dL$) and Kocat-D1-2 group ($259.5{\pm}35.0\;mg/dL$) were significantly lower when compared to the DM control group ($451{\pm}42.6\;mg/dL$). Furthermore, the levels of glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), albumin and high-density lipoprotein (HDL) cholesterol in the serum of the Kocat-D1-2 group were significantly normalized when compared to the DM control group. However, significant differences were not observed between the Kocat-D1-1 group and the DM control group. Histochemical staining of the liver of the Kocat-D1-2 group revealed no fat accumulation. The insulin level was significantly upregulated in the Kocat-D1-2 group ($0.13{\pm}0.02\;ng/mL$) when compared to the DM control group ($0.05{\pm}0.04\;ng/mL$). The relative volume of $\beta$-cells in the pancreas of the Kocat-D1-2 group ($49.4{\pm}4.2%$) also increased significantly when compared to the DM control group ($12.9{\pm}7.9%$). These results suggest that Kocat-D1 exerts an anti-hyperglycemic effect through the enhancement of insulin secretion.

Sulforaphane Inhibits Growth of Human Breast Cancer Cells and Augments the Therapeutic Index of the Chemotherapeutic Drug, Gemcitabine

  • Hussain, Arif;Mohsin, Javeria;Prabhu, Sathyen Alwin;Begum, Salema;Nusri, Qurrat El-Ain;Harish, Geetganga;Javed, Elham;Khan, Munawwar Ali;Sharma, Chhavi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5855-5860
    • /
    • 2013
  • Phytochemicals are among the natural chemopreventive agents with most potential for delaying, blocking or reversing the initiation and promotional events of carcinogenesis. They therefore offer cancer treatment strategies to reduce cancer related death. One such promising chemopreventive agent which has attracted considerable attention is sulforaphane (SFN), which exhibits anti-cancer, anti-diabetic, and anti-microbial properties. The present study was undertaken to assess effect of SFN alone and in combination with a chemotherapeutic agent, gemcitabine, on the proliferative potential of MCF-7 cells by cell viability assay and authenticated the results by nuclear morphological examination. Further we analyzed the modulation of expression of Bcl-2 and COX-2 on treatment of these cells with SFN by RT-PCR. SFN showed cytotoxic effects on MCF-7 cells in a dose- and time-dependent manner via an apoptotic mode of cell death. In addition, a combinational treatment of SFN and gemcitabine on MCF-7 cells resulted in growth inhibition in a synergistic manner with a combination index (CI)<1. Notably, SFN was found to significantly downregulate the expression of Bcl-2, an anti-apoptotic gene, and COX-2, a gene involved in inflammation, in a time-dependent manner. These results indicate that SFN induces apoptosis and anti-inflammatory effects on MCF-7 cells via downregulation of Bcl-2 and COX-2 respectively. The combination of SFN and gemcitabine may potentiate the efficacy of gemcitabine and minimize the toxicity to normal cells. Taken together, SFN may be a potent anti-cancer agent for breast cancer treatment.