Browse > Article
http://dx.doi.org/10.12925/jkocs.2015.32.2.202

Poly(Dimethylaminoethyl Methacrylate)-Based pH-Responsive Hydrogels Regulate Doxorubicin Release at Acidic Condition  

Lee, Seung-Hun (Department of Engineering Chemistry, Chungbuk National University)
You, Jin-Oh (Department of Engineering Chemistry, Chungbuk National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.32, no.2, 2015 , pp. 202-214 More about this Journal
Abstract
Stimuli-responsive biomaterials that alter their function through sensing local molecular cues may enable technological advances in the fields of drug delivery, gene delivery, actuators, biosensors, and tissue engineering. In this research, pH-responsive hydrogel which is comprised of dimethylaminoethyl methacylate (DMAEMA) and 2-hydroxyethyl methacrylate (HEMA) was synthesized for the effective delivery of doxorubicin (Dox) to breast cancer cells. Cancer and tumor tissues show a lower extracellular pH than normal tissues. DMAEMA/HEMA hydrogels showed significant sensitivity by small pH changes and each formulation of hydrogels was examined by scanning electron microscopy, mechanical test, equilibrium mass swelling, controlled Dox release, and cytotoxicity. High swelling ratios and Dox release were obtained at low pH buffer condition, low cross-linker concentration, and high content of DMAEMA. Dox release was accelerated to 67.3% at pH 5.5 for 6-h incubation at $37^{\circ}C$, while it was limited to 13.8% at pH7.4 at the same time and temperature. Cell toxicity results to breast cancer cells indicate that pH-responsive DMAEMA/HEMA hydrogels may be used as an efficient matrix for anti-cancer drug delivery with various transporting manners. Also, pH-responsive DMAEMA/HEMA hydrogels may be useful in therapeutic treatment which is required a triggered release at low pH range such as gene delivery, ischemia, and diabetic ketoacidosis.
Keywords
pH-responsive hydrogel; DMAEMA; drug delivery; doxorubicin; cancer therapy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Cui, Y. Hu, Z. Huang, C. Ma, L. Yu, X. Hu, Int.J. Therm. Sci. 79 (2014) 276-282.   DOI
2 D.P. Huynh, G.J. Im, S.Y. Chae, K.C. Lee, D.S. Lee, J. Control. Release 137 (2009) 20-24.   DOI
3 N. Zalachas, S. Cai, Z. Suo, Y. Lapusta, Int. J. Solids. Struct. 50 (2013) 920-927.   DOI
4 Y. Hu, J.O. You, D.T. Auguste, Z. Suo, J.J. Vlassak, J. Mater. Res. 27 (2012) 152-160.   DOI
5 J. Liu, J. Nie, Y. Zhao, Y. He, J. Photoch. Photobio. A 211 (2010) 20-25.   DOI
6 H. Li, Z. Yuan, K.Y. Lam, H.P. Lee, J. Chen, J. Hanes, J. Fu, Biosens. Bioelectron. 19 (2004) 1097-1107.   DOI
7 X.-W. Liu, S. Zhu, S.-R. Wu, P. Wang, G.-Z. Han, Colloid Surface A 417 (2013) 140-145.   DOI
8 A.M. Lowman, M. Morishita, M. Kajita, T. Nagai, N.A. Peppas, J. Pharm. Sci. 88 (1999) 933-937.   DOI
9 J.O. You, D.T. Auguste, Nano Lett. 9 (2009) 4467-4473.   DOI
10 X. Gao, Y. Cao, X. Song, Z. Zhang, X. Zhuang, C. He, X. Chen, Macromol. Biosci. 14 (2014) 565-575.   DOI
11 N.I. Georgiev, A.M. Asiri, A.H. Qusti, K.A. Alamry, V.B. Bojinov, Sensor. Actuat. B-Chem. 190 (2014) 185-198.   DOI
12 S.W. Jang, J.W. Lee, D.S. Ryu, M. Son, M.J. Kang, Int. J. Biol. Macromol. 70C (2014) 174-178.
13 N. Solomko, O. Budishevska, S. Voronov, K. Landfester, A. Musyanovych, Macromol. Biosci. 14 (2014) 1076-1083.   DOI
14 S.S. Halacheva, D.J. Adlam, E.K. Hendow, T.J. Freemont, J. Hoyland, B.R. Saunders, Biomacromolecules 15 (2014) 1814-1827.   DOI
15 P. Yang, D. Li, S. Jin, J. Ding, J. Guo, W. Shi, C. Wang, Biomaterials 35 (2014) 2079-2088.   DOI
16 J.O. You, D.T. Auguste, Biomaterials 31 (2010) 6859-6866.   DOI
17 Y. Tian, Chinese Chem. Lett. 19 (2008) 1111-1114.   DOI
18 S. Peppicelli, F. Bianchini, L. Calorini, Cancer metastasis Rev. 33 (2014) 823-832.   DOI
19 S. Quader, H. Cabral, Y. Mochida, T. Ishii, X. Liu, K. Toh, H. Kinoh, Y. Miura, N. Nishiyama, K. Kataoka, J. Control. Release 188 (2014) 67-77.   DOI
20 A.L. Daniel-da-Silva, L. Ferreira, A.M. Gil, T. Trindade, J. Colloid Interface Sci. 355 (2011) 512-517.   DOI
21 J.O. You, D.T. Auguste, Biomaterials 29 (2008) 1950-1957.   DOI
22 F.R. Gruijil, H.J. Kranen, L.H.F. Mullenders, J. Photoch. Photobio. B 63 (2001) 19-27.   DOI
23 X. Zhang, K. Matyjaszewski, Macromolecules 32 (1999) 1763-1766.   DOI
24 S. Brahim, D. Narinesingh, A. Guiseppi-Elie, Biomacromolecules 4 (2003) 1224-1231.   DOI
25 Y. Li, K. Xiao, W. Zhu, W. Deng, K.S. Lam, Adv. Drug Deliv. Rev. 66 (2014) 58-73.   DOI
26 R.P. Johnson, S. Uthaman, J.V. John, M.S. Heo, I.K. Park, H. Suh, I. Kim, Macromol. Bio. 14 (2014) 1239-1248.   DOI
27 G. Slaughter, J. Sunday, IEEE Sens. J. 14 (2014) 1573-1576.   DOI
28 N. Ramalingam, T.S. Natarajan, S. Rajiv, J. Biomed. Mater. Res. A 103 (2014) 16-24.
29 A. Gabizon, H. Shmeeda, T. Grenader, Eur. J. Pharm. Sci. 45 (2012) 388-398.   DOI
30 J.O. You, P. Guo, D.T. Auguste, Angew. Chem. Int. Edit. 52 (2013) 4141-4146.   DOI
31 G.D. Kang, S.H. Cheon, S.C. Song, Int. J. Pharm. 319 (2006) 29-36.   DOI
32 L. Mu, S.S. Feng, J. Contorl. Release 86 (2003) 33-48.   DOI