• Title/Summary/Keyword: Anti-cancer compound

Search Result 250, Processing Time 0.035 seconds

Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models

  • Kim, Seung-Hee;Choi, Kyung-Chul
    • Toxicological Research
    • /
    • v.29 no.4
    • /
    • pp.229-234
    • /
    • 2013
  • Phytoestrogens exist in edible compounds commonly found in fruits or plants. For long times, phytoestrogens have been used for therapeutic treatments against human diseases, and they can be promising ingredients for future pharmacological industries. Kaempferol is a yellow compound found in grapes, broccoli and yellow fruits, which is one of flavonoid as phytoestrogens. Kaempferol has been suggested to have an antioxidant and anti-inflammatory effect. In past decades, many studies have been performed to examine anti-toxicological role(s) of kaempferol against human cancers. It has been shown that kaempferol may be involved in the regulations of cell cycle, metastasis, angiogenesis and apoptosis in various cancer cell types. Among them, there have been a few of the studies to examine a relationship between kaempferol and apoptosis. Thus, in this review, we highlight the effect(s) of kaempferol on the regulation of apoptosis in diverse cancer cell models. This could be a forecast in regard to use of kaempferol as promising treatment against human diseases.

Anti-Proliferative and Pro-Apoptotic Activities of 4-Methyl-2,6-bis(1-phenylethyl)phenol in Cancer Cells

  • Sung, Nak Yoon;Kim, Seung Cheol;Kim, Yun Hwan;Kim, Gihyeon;Lee, Yunmi;Sung, Gi-Ho;Kim, Ji Hye;Yang, Woo Seok;Kim, Mi Seon;Baek, Kwang-Soo;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.402-409
    • /
    • 2016
  • It has been found that 4-isopropyl-2,6-bis(1-phenylethyl)phenol (KTH-13), a novel compound isolated from Cordyceps bassiana, is able to suppress tumor cell proliferation by inducing apoptosis. To mass-produce this compound, we established a total synthesis method. Using those conditions, we further synthesized various analogs with structural similarity to KTH-13. In this study, we aimed to test their anti-cancer activity by measuring anti-proliferative and pro-apoptotic activities. Of 8 compounds tested, 4-methyl-2,6-bis(1-phenylethyl)phenol (KTH-13-Me) exhibited the strongest anti-proliferative activity toward MDA-MB 231 cells. KTH-13-Me also similarly suppressed the survival of various cancer cell lines, including C6 glioma, HCT-15, and LoVo cells. Treatment of KTH-13-Me induced several apoptotic signs in C6 glioma cells, such as morphological changes, induction of apoptotic bodies, and nuclear fragmentation and chromatin condensation. Concordantly, early-apoptotic cells were also identified by staining with FITC-Annexin V/PI. Moreover, KTH-13-Me highly enhanced the activation of caspase-3 and caspase-9, and decreased the protein level of Bcl-2. In addition, the phosphorylation levels of Src and STAT3 were diminished in KTH-13-Me-treated C6 cells. Therefore, these results suggest that KTH-13-Me can be developed as a novel anti-cancer drug capable of blocking proliferation, inducing apoptosis, and blocking cell survival signaling in cancer cells.

Synthesis of Butein Analogues and their Anti-proliferative Activity Against Gefitinib-resistant Non-small Cell Lung Cancer (NSCLC) through Hsp90 Inhibition

  • Seo, Young Ho;Jeong, Ju Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1294-1298
    • /
    • 2014
  • Non-small cell lung cancer (NSCLC) is the most common type of lung cancer representing 85% of lung cancer patients. Despite several EGFR-targeted drugs have been developed in the treatment of NSCLC, the clinical efficacy of these EGFR-targeted therapies is being challenged by the occurrence of drug resistance. In this regard, Hsp90 represents great promise as a therapeutic target of cancerous diseases due to its role in modulating and stabilizing numerous oncogenic proteins. Accordingly, inhibition of single Hsp90 protein simultaneously disables multiple signaling networks so as to overcome drug resistance in cancer. In this study, we synthesized a series of 11 butein analogues and evaluated their biological activities against gefitinibresistant NSCLC cells (H1975). Our study indicated that analogue 1h inhibited the proliferation of H1975 cells, down-regulated the expression of Hsp90 client proteins, including EGFR, Met, Her2, Akt and Cdk4, and upregulated the expression of Hsp70. The result suggested that compound 1h disrupted Hsp90 chaperoning function and could serve a potential lead compound to overcome the drug resistance in cancer chemotherapy.

Fisetin Suppresses Macrophage-Mediated Inflammatory Responses by Blockade of Src and Syk

  • Kim, Jun Ho;Kim, Mi-Yeon;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.414-420
    • /
    • 2015
  • Flavonoids, such as fisetin (3,7,3',4'-tetrahydroxyflavone), are plant secondary metabolites. It has been reported that fisetin is able to perform numerous pharmacological roles including anti-inflammatory, anti-microbial, and anti-cancer activities; however, the exact anti-inflammatory mechanism of fisetin is not understood. In this study, the pharmacological action modes of fisetin in lipopolysaccharide (LPS)-stimulated macrophage-like cells were elucidated by using immunoblotting analysis, kinase assays, and an overexpression strategy. Fisetin diminished the release of nitric oxide (NO) and reduced the mRNA levels of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-${\alpha}$, and cyclooxygenase (COX)-2 in LPS-stimulated RAW264.7 cells without displaying cytotoxicity. This compound also blocked the nuclear translocation of p65/nuclear factor (NF)-${\kappa}B$. In agreement, the upstream phosphorylation events for NF-${\kappa}B$ activation, composed of Src, Syk, and I${\kappa}B{\alpha}$, were also reduced by fisetin. The phospho-Src level, triggered by overexpression of wild-type Src, was also inhibited by fisetin. Therefore, these results strongly suggest that fisetin can be considered a bioactive immunomodulatory compound with anti-inflammatory properties through suppression of Src and Syk activities.

Gambogenic Acid Induction of Apoptosis in a Breast Cancer Cell Line

  • Zhou, Jing;Luo, Yan-Hong;Wang, Ji-Rong;Lu, Bin-Bin;Wang, Ke-Ming;Tian, Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7601-7605
    • /
    • 2013
  • Background: Gambogenic acid is a major active compound of gamboge which exudes from the Garcinia hanburyi tree. Gambogenic acid anti-cancer activity in vitro has been reported in several studies, including an A549 nude mouse model. However, the mechanisms of action remain unclear. Methods: We used nude mouse models to detect the effect of gambogenic acid on breast tumors, analyzing expression of apoptosis-related proteins in vivo by Western blotting. Effects on cell proliferation, apoptosis and apoptosis-related proteins in MDA-MB-231 cells were detected by MTT, flow cytometry and Western blotting. Inhibitors of caspase-3,-8,-9 were also used to detect effects on caspase family members. Results: We found that gambogenic acid suppressed breast tumor growth in vivo, in association with increased expression of Fas and cleaved caspase-3,-8,-9 and bax, as well as decrease in the anti-apoptotic protein bcl-2. Gambogenic acid inhibited cell proliferation and induced cell apoptosis in a concentration-dependent manner. Conclusion: Our observations suggested that Gambogenic acid suppressed breast cancer MDA-MB-231 cell growth by mediating apoptosis through death receptor and mitochondrial pathways in vivo and in vitro.

α, γ-Mangostins Induce Autophagy and Show Synergistic Effect with Gemcitabine in Pancreatic Cancer Cell Lines

  • Kim, Myoungjae;Chin, Young-Won;Lee, Eun Joo
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.609-617
    • /
    • 2017
  • Pancreatic cancer is one of the most lethal and aggressive cancers in the world. However, no effective treatment is currently available for pancreatic cancer. The objective of this study was to determine the anti-pancreatic cancer effect of ${\alpha}$-mangostin (${\alpha}M$) and ${\gamma}$-mangostin (${\gamma}M$) extracted from the pericarp of Garcinia mangostana L.. Both ${\alpha}$M and ${\gamma}M$ reduced the viability of pancreatic cancer cells MIA PaCa-2 and PANC-1 in a dose-dependent manner. These compounds induced apoptosis by increasing c-PARP and c-Caspase 3 levels. They also induced autophagy by increasing levels of microtubule-associated protein 1A/1B light chain 3B (LC3II) in both cell lines while decreasing sequestosome 1 (p62) in MIA PaCa-2. Both ${\alpha}$M and ${\gamma}M$ induced autophagy through increasing phosphorylation levels of AMP-activated protein kinase (p-AMPK) and p38-mitogen activated protein kinase (p-p38) while decreasing phosphorylation level of mammalian target of rapamycin complex 1 (p-mTOR). Of various microRNAs (miRNA), miR-18a was found to be a putative regulatory miRNA for autophagy induced by ${\alpha}$M or ${\gamma}M$. In combination with gemcitabine, a compound frequently used in pancreatic cancer treatment, ${\alpha}$M and ${\gamma}M$ showed synergistic anti-cancer effects in MIA PaCa-2. Collectively, these results suggest that ${\alpha}$M and ${\gamma}M$ can induce apoptosis and autophagy in pancreatic cancer cells and that their anti-cancer effect is likely to be associated with miR-18a. In conclusion, ${\alpha}$M and ${\gamma}M$ might be used as a potential new therapy for pancreatic cancer.

Systemic and molecular analysis dissect the red ginseng induction of apoptosis and autophagy in HCC as mediated with AMPK

  • Young Woo Kim;Seon Been Bak;Won-Yung Lee;Su Jin Bae;Eun Hye Lee;Ju-Hye Yang;Kwang Youn Kim;Chang Hyun Song;Sang Chan Kim;Un-Jung Yun;Kwang Il Park
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.479-491
    • /
    • 2023
  • Background: Hepatocellular carcinoma (HCC) has a high incidence and is one of the highest mortality cancers when advanced stage is proceeded. However, Anti-cancer drugs available for treatment are limited and new anti-cancer drugs and new ways to treat them are minimal. We examined that the effects and possibility of Red Ginseng (RG, Panax ginseng Meyer) as new anti-cancer drug on HCC by combining network pharmacology and molecular biology. Materials and Methods: Network pharmacological analysis was employed to investigate the systems-level mechanism of RG focusing on HCC. Cytotoxicity of RG was determined by MTT analysis, which were also stained by annexin V/PI staining for apoptosis and acridine orange for autophagy. For the analyze mechanism of RG, we extracted protein and subjected to immunoblotting for apoptosis or autophagy related proteins. Results: We constructed compound-target network of RG and identified potential pathways related to HCC. RG inhibited growth of HCC through acceleration of cytotoxicity and reduction of wound healing ability of HCC. RG also increased apoptosis and autophagy through AMPK induction. In addition, its ingredients, 20S-PPD (protopanaxadiol) and 20S-PPT (protopanaxatriol), also induced AMPK mediated apoptosis and autophagy. Conclusion: RG effectively inhibited growth of HCC cells inducing apoptosis and autophagy via ATG/AMPK in HCC cells. Overall, our study suggests possibility as new anti-cancer drug on HCC by proof for the mechanism of the anti-cancer action of RG.

Antioxidant and Anti-cancer Cell Proliferation Activity of Propolis Extracts from Two Extraction Methods

  • Khacha-ananda, Supakit;Tragoolpua, Khajornsak;Chantawannakul, Panuwan;Tragoolpua, Yingmanee
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6991-6995
    • /
    • 2013
  • Antioxidant activity, total phenolic, total flavonoid compounds and cytotoxicity to cancer cell lines of propolis extracts from two extraction methods were investigated in this study. Propolis was collected from Phayao province and extracted with 70% ethanol using maceration and sonication techniques. The antioxidant activity was evaluated by DPPH assay. Total phenolic and flavonoid compounds were also determined. Moreover, the cytotoxicity of propolis was evaluated using MTT assay. The percentage propolis yield after extraction using maceration (18.1%) was higher than using sonication (15.7%). Nevertheless, antioxidant and flavonoid compounds of the sonication propolis extract were significant greater than using maceration. Propolis extract from sonication showed antioxidant activity by $3.30{\pm}0.15$ mg gallic acid equivalents/g extract. Total phenolic compound was $18.3{\pm}3.30$ mg gallic acid equivalents/g extract and flavonoid compound was $20.49{\pm}0.62$ mg quercetin/g extract. Additionally, propolis extracts from two extraction methods demonstrated the inhibitory effect on proliferation of A549 and HeLa cancer cell lines at 24, 48 and 72 hours in a dose-dependent manner. These results are of interest for the selection of the most appropriate method for preparation of propolis extracts as potential antioxidant and anticancer agents.

CoMSIA 3D-QSAR Analysis of 3,4-Dihydroquinazoline Derivatives Against Human Colon Cancer HT-29 Cells

  • Kwon, Gi Hyun;Cho, Sehyeon;Lee, Jinsung;Sohn, Joo Mi;Byun, Joon Seok;Lee, Kyung-Tae;Lee, Jae Yeol
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3181-3187
    • /
    • 2014
  • A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human colon cancer HT-29 cell were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, BK10001 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined electrostatic, hydrophobic, and hydrogen-bond acceptor fields ($q^2=0.648$, $r^2=0.882$). This model was validated by an external test set of six compounds giving satisfactory predictive $r^2$ values of 0.879. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human colon cancer.

Synthesis of Flavokawain B and its Anti-proliferative Activity Against Gefitinib-resistant Non-small Cell Lung Cancer (NSCLC)

  • Seo, Young Ho;Oh, Yong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3782-3786
    • /
    • 2013
  • Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and that accounts for 85% of lung cancer patients. Although several EGFR-targeted drugs have been developed in the treatment of NSCLC, the clinical efficacy of EGFR-targeted drugs in NSCLC is limited by the occurrence of drug resistance. In this regard, Hsp90 represents great promise as a therapeutic target of cancer due to its potential to simultaneously disable multiple signaling pathways. In this study, we discovered that a natural product, flavokawain B disrupted Hsp90 chaperoning function and impaired the growth of gefitinib-resistant non-small cell lung cancer (H1975). The result suggested that flavokawain B could serve as a potential lead compound to overcome the drug resistance in cancer chemotherapy.