Browse > Article
http://dx.doi.org/10.5487/TR.2013.29.4.229

Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models  

Kim, Seung-Hee (Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
Choi, Kyung-Chul (Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
Publication Information
Toxicological Research / v.29, no.4, 2013 , pp. 229-234 More about this Journal
Abstract
Phytoestrogens exist in edible compounds commonly found in fruits or plants. For long times, phytoestrogens have been used for therapeutic treatments against human diseases, and they can be promising ingredients for future pharmacological industries. Kaempferol is a yellow compound found in grapes, broccoli and yellow fruits, which is one of flavonoid as phytoestrogens. Kaempferol has been suggested to have an antioxidant and anti-inflammatory effect. In past decades, many studies have been performed to examine anti-toxicological role(s) of kaempferol against human cancers. It has been shown that kaempferol may be involved in the regulations of cell cycle, metastasis, angiogenesis and apoptosis in various cancer cell types. Among them, there have been a few of the studies to examine a relationship between kaempferol and apoptosis. Thus, in this review, we highlight the effect(s) of kaempferol on the regulation of apoptosis in diverse cancer cell models. This could be a forecast in regard to use of kaempferol as promising treatment against human diseases.
Keywords
Phytoestrogen; Kaempferol; Apoptosis; Cancer models; Estrogen receptors;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Oh, S.M., Kim, Y.P. and Chung, K.H. (2006) Biphasic effects of kaempferol on the estrogenicity in human breast cancer cells. Arch. Pharmacal Res., 29, 354-362.   과학기술학회마을   DOI   ScienceOn
2 Kuiper, G.G., Lemmen, J.G., Carlsson, B., Corton, J.C., Safe, S.H., van der Saag, P.T., van der Burg, B. and Gustafsson, J.A. (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology, 139, 4252-4263.   DOI
3 Kao, Y.C., Zhou, C., Sherman, M., Laughton, C.A. and Chen, S. (1998) Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study. Environ. Health Perspect., 106, 85-92.   DOI
4 Kang, N.H., Hwang, K.A., Lee, H.R., Choi, D.W. and Choi, K.C. (2013) Resveratrol regulates the cell viability promoted by 17beta-estradiol or bisphenol A via down-regulation of the cross-talk between estrogen receptor alpha and insulin growth factor-1 receptor in BG-1 ovarian cancer cells. Food Chem. Toxicol., 59, 373-379.   DOI   ScienceOn
5 Murkies, A.L., Wilcox, G. and Davis, S.R. (1998) Clinical review 92: Phytoestrogens. J. Clin. Endocrinol. Metab., 83, 297-303.
6 Choi, E.J. and Ahn, W.S. (2008) Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells. Nutr. Res. Pract., 2, 322-325.   과학기술학회마을   DOI   ScienceOn
7 Havsteen, B.H. (2002) The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 96, 67-202.   DOI   ScienceOn
8 Touillaud, M.S., Pillow, P.C., Jakovljevic, J., Bondy, M.L., Singletary, S.E., Li, D. and Chang, S. (2005) Effect of dietary intake of phytoestrogens on estrogen receptor status in premenopausal women with breast cancer. Nutr. Cancer, 51, 162-169.   DOI   ScienceOn
9 Reade, M.C., Millo, J.L., Young, J.D. and Boyd, C.A. (2005) Nitric oxide synthase is downregulated, while haem oxygenase is increased, in patients with septic shock. Br. J. Anaesth., 94, 468-473.   DOI   ScienceOn
10 Cook, J.A., Gius, D., Wink, D.A., Krishna, M.C., Russo, A. and Mitchell, J.B. (2004) Oxidative stress, redox, and the tumor microenvironment. Semin. Radiat. Oncol., 14, 259-266.
11 Garcia-Mediavilla, V., Crespo, I., Collado, P.S., Esteller, A., Sanchez-Campos, S., Tunon, M.J. and Gonzalez-Gallego, J. (2007) The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol., 557, 221-229.   DOI   ScienceOn
12 Loo, D.T. and Rillema, J.R. (1998) Measurement of cell death. Methods Cell Biol., 57, 251-264.   DOI
13 Jiang, S., Cheng, R., Wang, X., Xue, T., Liu, Y., Nel, A., Huang, Y. and Duan, X. (2013) Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nat. Commun., 4, 2225.
14 Rostoka, E., Baumane, L., Isajevs, S., Line, A., Dzintare, M., Svirina, D., Sharipova, J., Silina, K., Kalvinsh, I. and Sjakste, N. (2010) Effects of kaempferol and myricetin on inducible nitric oxide synthase expression and nitric oxide production in rats. Basic Clin. Pharmacol. Toxicol., 106, 461-466.   DOI   ScienceOn
15 Boberg, J., Mandrup, K.R., Jacobsen, P.R., Isling, L.K., Hadrup, N., Berthelsen, L., Elleby, A., Kiersgaard, M., Vinggaard, A.M., Hass, U. and Nellemann, C. (2013) Endocrine disrupting effects in rats perinatally exposed to a dietary relevant mixture of phytoestrogens. Reprod. Toxicol., 40, 41-51.   DOI   ScienceOn
16 Kim, H.K., Park, H.R., Lee, J.S., Chung, T.S., Chung, H.Y. and Chung, J. (2007) Down-regulation of iNOS and TNF-alpha expression by kaempferol via NF-kappaB inactivation in aged rat gingival tissues. Biogerontology, 8, 399-408.   DOI   ScienceOn
17 Pang, J.L., Ricupero, D.A., Huang, S., Fatma, N., Singh, D.P., Romero, J.R. and Chattopadhyay, N. (2006) Differential activity of kaempferol and quercetin in attenuating tumor necrosis factor receptor family signaling in bone cells. Biochem. Pharmacol., 71, 818-826.   DOI   ScienceOn
18 Jin, Z., McDonald, E.R. 3rd, Dicker, D.T. and El-Deiry, W.S. (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J. Biol. Chem., 279, 35829-35839.   DOI   ScienceOn
19 Siegelin, M.D., Reuss, D.E., Habel, A., Herold-Mende, C. and von Deimling, A. (2008) The flavonoid kaempferol sensitizes human glioma cells to TRAIL-mediated apoptosis by proteasomal degradation of survivin. Mol. Cancer Ther., 7, 3566-3574.   DOI   ScienceOn
20 Yoshida, T., Konishi, M., Horinaka, M., Yasuda, T., Goda, A.E., Taniguchi, H., Yano, K., Wakada, M. and Sakai, T. (2008) Kaempferol sensitizes colon cancer cells to TRAIL-induced apoptosis. Biochem. Biophys. Res. Commun., 375, 129-133.   DOI   ScienceOn
21 Deribe, Y.L., Pawson, T. and Dikic, I. (2010) Post-translational modifications in signal integration. Nat. Struct. Mol. Biol., 17, 666-672.   DOI   ScienceOn
22 Alenzi, F.Q., Lotfy, M. and Wyse, R. (2010) Swords of cell death: caspase activation and regulation. Asian Pac. J. Cancer Prev., 11, 271-280.
23 Bestwick, C.S., Milne, L. and Duthie, S.J. (2007) Kaempferol induced inhibition of HL-60 cell growth results from a heterogeneous response, dominated by cell cycle alterations. Chem. Biol. Interact., 170, 76-85.   DOI   ScienceOn
24 Engel, T. and Henshall, D.C. (2009) Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis? Int. J. Physiol. Pathophysiol. Pharmacol., 1, 97-115.
25 Indran, I.R., Tufo, G., Pervaiz, S. and Brenner, C. (2011) Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim. Biophys. Acta, 1807, 735-745.   DOI   ScienceOn
26 Nguyen, T.T., Tran, E., Ong, C.K., Lee, S.K., Do, P.T., Huynh, T.T., Nguyen, T.H., Lee, J.J., Tan, Y., Ong, C.S. and Huynh, H. (2003) Kaempferol-induced growth inhibition and apoptosis in A549 lung cancer cells is mediated by activation of MEK-MAPK. J. Cell. Physiol., 197, 110-121.   DOI   ScienceOn
27 Luo, H., Rankin, G.O., Juliano, N., Jiang, B.H. and Chen, Y.C. (2012) Kaempferol inhibits VEGF expression and in vitro angiogenesis through a novel ERK-NFkappaB-cMyc-p21 pathway. Food Chem., 130, 321-328.   DOI   ScienceOn
28 Kim, Y.M., Talanian, R.V. and Billiar, T.R. (1997) Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J. Biol. Chem., 272, 31138-31148.   DOI   ScienceOn
29 Cooper, C.E. (2002) Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector? Trends Biochem. Sci., 27, 33-39.   DOI   ScienceOn
30 Luo, H., Rankin, G.O., Liu, L., Daddysman, M.K., Jiang, B.H. and Chen, Y.C. (2009) Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutr. Cancer, 61, 554-563.   DOI   ScienceOn
31 Vogelstein, B. and Kinzler, K.W. (2004) Cancer genes and the pathways they control. Nat. Med., 10, 789-799.   DOI   ScienceOn
32 Kang, G.Y., Lee, E.R., Kim, J.H., Jung, J.W., Lim, J., Kim, S.K., Cho, S.G. and Kim, K.P. (2009) Downregulation of PLK-1 expression in kaempferol-induced apoptosis of MCF-7 cells. Eur. J. Pharmacol., 611, 17-21.   DOI   ScienceOn
33 Xu, W., Liu, J., Li, C., Wu, H.Z. and Liu, Y.W. (2008) Kaempferol-7-O-beta-D-glucoside (KG) isolated from Smilax china L. rhizome induces G2/M phase arrest and apoptosis on HeLa cells in a p53-independent manner. Cancer Lett., 264, 229-240.   DOI   ScienceOn
34 Chen, H.J., Lin, C.M., Lee, C.Y., Shih, N.C., Peng, S.F., Tsuzuki, M., Amagaya, S., Huang, W.W. and Yang, J.S. (2013) Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncol. Rep., 30, 925-932.   DOI
35 Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L. and Henson, P.M. (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol., 148, 2207-2216.
36 Martina, M., Clerici, M., Baldo, V., Bonetti, D., Lucchini, G. and Longhese, M.P. (2012) A balance between Tel1 and Rif2 activities regulates nucleolytic processing and elongation at telomeres. Mol. Cell Biol., 32, 1604-1617.   DOI
37 Majno, G. and Joris, I. (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol., 146, 3-15.
38 Edinger, A.L. and Thompson, C.B. (2004) Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol., 16, 663-669.   DOI   ScienceOn
39 Kerr, J.F., Winterford, C.M. and Harmon, B.V. (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer, 73, 2013-2026.   DOI   ScienceOn
40 Kerr, J.F., Wyllie, A.H. and Currie, A.R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 26, 239-257.   DOI   ScienceOn
41 Singh, N.P. (2000) A simple method for accurate estimation of apoptotic cells. Exp. Cell Res., 256, 328-337.   DOI   ScienceOn
42 Kelly, K.J., Sandoval, R.M., Dunn, K.W., Molitoris, B.A. and Dagher, P.C. (2003) A novel method to determine specificity and sensitivity of the TUNEL reaction in the quantitation of apoptosis. Am. J. Physiol. Cell Physiol., 284, C1309-1318.   DOI   ScienceOn
43 Riccardi, C. and Nicoletti, I. (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc., 1, 1458-1461.   DOI   ScienceOn
44 Branca, F. and Lorenzetti, S. (2005) Health effects of phytoestrogens. Forum Nutr., 100-111.
45 Danial, N.N. and Korsmeyer, S.J. (2004) Cell death: critical control points. Cell, 116, 205-219.   DOI   ScienceOn
46 Kastan, M.B. and Bartek, J. (2004) Cell-cycle checkpoints and cancer. Nature, 432, 316-323.   DOI   ScienceOn
47 Prehn, R.T. (1976) Tumor progression and homeostasis. Adv. Cancer Res., 23, 203-236.   DOI
48 Dixon, R.A. (2004) Phytoestrogens. Annu. Rev. Plant Biol., 55, 225-261.   DOI   ScienceOn
49 Poluzzi, E., Piccinni, C., Raschi, E., Rampa, A., Recanatini, M. and De Ponti, F. (2013) Phytoestrogens in postmenopause: the state of the art from a chemical, pharmacological and regulatory perspective. Curr. Med. Chem. In press.
50 Tham, D.M., Gardner, C.D. and Haskell, W.L. (1998) Clinical review 97: Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. J. Clin. Endocrinol. Metab., 83, 2223-2235.
51 Adlercreutz, H., Mousavi, Y., Clark, J., Hockerstedt, K., Hamlainen, E., Wahala, K., Makela, T. and Hase, T. (1992) Dietary phytoestrogens and cancer: in vitro and in vivo studies. J. Steroid Biochem. Mol. Biol., 41, 331-337.   DOI   ScienceOn
52 Hwang, K.A., Kang, N.H., Yi, B.R., Lee, H.R., Park, M.A. and Choi, K.C. (2013) Genistein, a soy phytoestrogen, prevents the growth of BG-1 ovarian cancer cells induced by 17beta-estradiol or bisphenol A via the inhibition of cell cycle progression. Int. J. Oncol., 42, 733-740.   DOI
53 Park, J.S., Rho, H.S., Kim, D.H. and Chang, I.S. (2006) Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J. Agric. Food Chem., 54, 2951-2956.   DOI   ScienceOn
54 Hwang, K.A., Park, M.A., Kang, N.H., Yi, B.R., Hyun, S.H., Jeung, E.B. and Choi, K.C. (2013) Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 beta-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways. Toxicol. Appl. Pharmacol., 272, 637-646.   DOI   ScienceOn
55 Rice-Evans, C. (2001) Flavonoid antioxidants. Curr. Med. Chem., 8, 797-807.   DOI   ScienceOn
56 Kim, S., Kim, K.Y., Han, C.S., Ki, K.S., Min, K.J., Zhang, X. and Whang, W.K. (2012) Simultaneous analysis of six major compounds in Osterici Radix and Notopterygii Rhizoma et Radix by HPLC and discrimination of their origins from chemical fingerprint analysis. Arch. Pharmacal Res., 35, 691-699.   과학기술학회마을   DOI   ScienceOn
57 Yoshikawa, T., Naito, Y. and Kondo, M. (1999) Ginkgo biloba leaf extract: review of biological actions and clinical applications. Antioxid. Redox Signaling, 1, 469-480.   DOI   ScienceOn
58 Kowalski, J., Samojedny, A., Paul, M., Pietsz, G. and Wilczok, T. (2005) Effect of apigenin, kaempferol and resveratrol on the expression of interleukin-1beta and tumor necrosis factor-alpha genes in J774.2 macrophages. Pharmacol. Rep., 57, 390-394.
59 Li, R.J., Mei, J.Z. and Liu, G.J. (2011) [Kaempferol-induced apoptosis of human esophageal squamous carcinoma Eca-109 cells and the mechanism]. Nanfang Yike Daxue Xuebao, 31, 1440-1442.
60 Marfe, G., Tafani, M., Indelicato, M., Sinibaldi-Salimei, P., Reali, V., Pucci, B., Fini, M. and Russo, M.A. (2009) Kaempferol induces apoptosis in two different cell lines via Akt inactivation, Bax and SIRT3 activation, and mitochondrial dysfunction. J. Cell. Biochem., 106, 643-650.   DOI   ScienceOn
61 Xie, F., Su, M., Qiu, W., Zhang, M., Guo, Z., Su, B., Liu, J., Li, X. and Zhou, L. (2013) Kaempferol promotes apoptosis in human bladder cancer cells by inducing the tumor suppressor, PTEN. Int. J. Mol. Sci., 14, 21215-21226.   DOI
62 Bennetts, H.W., Underwood, E.J. and Shier, F.L. (1946) A specific breeding problem of sheep on subterranean clover pastures in Western Australia. Aust. Vet. J., 22, 2-12.   DOI
63 Adlercreutz, H. (1990) Western diet and Western diseases: some hormonal and biochemical mechanisms and associations. Scand. J. Clin. Lab. Invest. Suppl., 201, 3-23.
64 Murkies, A.L., Lombard, C., Strauss, B.J., Wilcox, G., Burger, H.G. and Morton, M.S. (1995) Dietary flour supplementation decreases post-menopausal hot flushes: effect of soy and wheat. Maturitas, 21, 189-195.   DOI   ScienceOn
65 Simons, L.A., von Konigsmark, M., Simons, J. and Celermajer, D.S. (2000) Phytoestrogens do not influence lipoprotein levels or endothelial function in healthy, postmenopausal women. Am. J. Cardiol., 85, 1297-1301.   DOI   ScienceOn
66 Atkinson, C., Compston, J.E., Day, N.E., Dowsett, M. and Bingham, S.A. (2004) The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial. Am. J. Clin. Nutr., 79, 326-333.   DOI
67 Wang, C. and Kurzer, M.S. (1997) Phytoestrogen concentration determines effects on DNA synthesis in human breast cancer cells. Nutr. Cancer, 28, 236-247.   DOI   ScienceOn
68 Kerr, J.F. (1971) Shrinkage necrosis: a distinct mode of cellular death. J. Pathol., 105, 13-20.   DOI
69 Thorburn, A. (2004) Death receptor-induced cell killing. Cell. Signalling, 16, 139-144.   DOI   ScienceOn