• Title/Summary/Keyword: Anti-bacterial activity

검색결과 348건 처리시간 0.023초

Properties of fermented soybean meal by kefir and its biological function

  • Ra, Seok Han;Renchinkhand, Gereltuya;Kim, Kwang-Yeon;Bae, Hyung Churl;Nam, Myoung Soo
    • 농업과학연구
    • /
    • 제48권1호
    • /
    • pp.21-31
    • /
    • 2021
  • Yeast strains are capable of hydrolyzing non-digestible saccharides, such as melibiose, raffinose, and stachyose, found in soy meal components. This study revealed the biochemical properties of fermented soybean meal during 72 hours with kefir. Starchyose and raffinose, non-digestible components, were almost digested in kefir 150 mL + soybean meal 500 g + water 70 mL and galactose was produced. Proteolysis of the soybean meal produced most of the small molecule peptides in kefir 150 mL + soybean meal 500 g + water 70 mL. The production of the vitamin B group and C were the highest in kefir 250 mL + soybean meal 500 g. The yeast number of the fermented soybean meal was 7.0 × 106 CFU·mL-1 which was the highest in kefir 250 mL + soybean meal 500 g. The lactic acid bacteria of the fermented soybean meal was the highest at 3.5 × 109 CFU·mL-1 in kefir 70 mL + soybean meal 500 g. The antioxidant effect was the highest at 57% in kefir 250 mL + soybean meal 500 g. Expression of inflammation-related cytokine (interleukin [IL]-1β, tumor necrosis factor [TNF]-α, and interleukin [IL]-6) was significantly inhibited in fermented soybean meals with different treatments. These results suggest that fermented soybean meal by kefir has an antiinflammatory and anti-oxidation activity and could be utilized in feed manufacturing, and inhydrolyzing non-digestible soy meal components.

Antagonistic Potentiality of Actinomycete-Derived Extract with Anti-Biofilm, Antioxidant, and Cytotoxic Capabilities as a Natural Combating Strategy for Multidrug-Resistant ESKAPE Pathogens

  • Mohamed H. El-Sayed;Fahdah A. Alshammari;Mohammed H. Sharaf
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.61-74
    • /
    • 2023
  • The global increase in multidrug-resistant (MDR) bacteria has inspired researchers to develop new strategies to overcome this problem. In this study, 23 morphologically different, soil-isolated actinomycete cultures were screened for their antibacterial ability against MDR isolates of ESKAPE pathogens. Among them, isolate BOGE18 exhibited a broad antibacterial spectrum, so it was selected and identified based on cultural, morphological, physiological, and biochemical characteristics. Chemotaxonomic analysis was also performed together with nucleotide sequencing of the 16S rRNA gene, which showed this strain to have identity with Streptomyces lienomycini. The ethyl acetate extract of the cell-free filtrate (CFF) of strain BOGE18 was evaluated for its antibacterial spectrum, and the minimum inhibitory concentration (MIC) ranged from 62.5 to 250 ㎍/ml. The recorded results from the in vitro anti-biofilm microtiter assay and confocal laser scanning microscopy (CLSM) of sub-MIC concentrations revealed a significant reduction in biofilm formation in a concentration-dependent manner. The extract also displayed significant scavenging activity, reaching 91.61 ± 4.1% and 85.06 ± 3.14% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. A promising cytotoxic ability against breast (MCF-7) and hepatocellular (HePG2) cancer cell lines was obtained from the extract with IC50 values of 47.15 ± 13.10 and 122.69 ± 9.12 ㎍/ml, respectively. Moreover, based on gas chromatography-mass spectrometry (GC-MS) analysis, nine known compounds were detected in the BOGE18 extract, suggesting their contribution to the multitude of biological activities recorded in this study. Overall, Streptomyces lienomycini BOGE18-derived extract is a good candidate for use in a natural combating strategy to prevent bacterial infection, especially by MDR pathogens.

고삼추출물이 치은섬유아세포의 세포주기 조절단백질 발현에 미치는 영향 (Effects of Sophorae Radix Extracts on the Expression ofcell cycle regulatory porteins in Human Gingival Fibroblasts)

  • 김흥식;김현아;유용욱;강태현;김윤철;김탁;피성희;유형근;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제30권4호
    • /
    • pp.869-885
    • /
    • 2000
  • Fibroblasts are major cellular components of gingiva and periodontal ligament. They regulate the healing process after surgery or injury. Recently, many natural medicines, whose advantages are less side effects and possibility of long-term use, have been studied for their capacity, their anti-bacterial and anti-inflammatory effects and regenerative potential of periodontal tissues. Sophorae radix have been traditionally used as an anti-bacterial and antiinflammatory drug in oriental medicine. The purpose of present study was to investigate the effects of Sophorae radix extract on cell cycle progression and its molecular mechanism in human gingival fibroblasts. Sophorae radix extracts($100{\mu}g/ml$) notably increased cell proliferation and cell activity in the human gingival fibroblasts as compared to non-supplemented controls. There was an increase in the S phase and a decrease in the G1 phase in $100{\mu}g/ml$ of Sophorae radix extracts group as compared to non-supplemented controls. The level of cyclin E and cdk 2 protein in test group was higher than that of control groups. But that of cyclin D, cdk 4, and cdk 6 was not distinguished from controls. The level of p53 protein in test group was lower than that of controls, whereas that of p21 was not different. The level of pRB protein in test group was higher than that of controls, whereas that of p16 was lower. These results indicate that the increase of cell proliferation by Sophorae radix extracts may be due to the increased expression of cyclin E and cdk 2, and the decreased expression of p53 and p16 in human gingival fibroblasts.

  • PDF

Inhibitory Effect of Benzofuran Compound on Cyclooxygenase

  • Min, Kyung-Rak;Ahn, Ki-Young;Chung, Eun-Yong;Lee, Yong-Rok;Kim, Yeong-Shik;Kim, Young-Soo
    • Natural Product Sciences
    • /
    • 제10권6호
    • /
    • pp.315-320
    • /
    • 2004
  • Alpha-viniferin was previously isolated as a cyclooxygenase (COX)-2 inhibitor from Carex humilis (Cyperaceae) and is an oligomeric stilbene compound with benzofuran (BF) moieties in its chemical structure. In the present study, a chemically synthetic BF compound, named as 3,3-dimethyl-2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18-hexadecahydro-1H-benzo[b] cyclopentadeca[d]furan-1-one, was discovered to inhibit bacterial lipo polysaccharide (LPS)-induced prostaglandin $E_2$ $(PGE_2)$ production in macrophages RAW 264.7. The BF compound exhibited a selectively preferred inhibitory effect on COX-2 activity over COX-1 activity. Furthermore, BF compound inhibited LPS-induced COX-2 expression at transcription level. As a down-regulatory mechanism of COX-2 expression shown by BF compound, suppression of nuclear factor $(NF)-{\kappa}B$ activation has been demonstrated. BF compound inhibited LPS-induced $NF-{\kappa}B$ transcriptional activity and nuclear translocation of $NF-{\kappa}B$ p65, in parallel, but did not affect LPS-induced degradation of inhibitory ${\kappa}B{\alpha}$ protein $(I{\kappa}B{\alpha})$. Taken together, anti-inflammatory effect of BF compound on $PGE_2$ production was ascribed by its down-regulatory action on LPS-induced COX-2 synthesis in addition to inhibitory action on enzyme activity of COX-2.

Anti-MRSA action of Papenfussiella kuromo

  • Lee, Sun-Ae;Mun, Su-Hyun;Kang, Ok-Hwa;Joung, Dae-Ki;Seo, Yun-Soo;Kang, Da-Hye;Kim, Sung-Bae;Kong, Ryong;Yang, Da-Wun;Kwon, Dong-Yeul
    • Natural Product Sciences
    • /
    • 제20권1호
    • /
    • pp.39-43
    • /
    • 2014
  • Papenfussiella kuromo (PK) is a marine plant and an abundant ecological resource for the future; it is found in almost 80% of the terrestrial biosphere. The aim of this study was to investigate the antibacterial activity of PK against methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant pathogen. The minimum inhibitory concentrations (MICs) of PK hexane fraction (PKH) against 7 strains of MRSA ranged from 1.0 to 2.0 mg/mL. In the checkerboard dilution method, a synergistic effect of the PKH and the antibiotics (oxacillin and norfloxacin) was seen. PKH markedly reduced the MIC of each of the 4 antibiotics against MRSA. The time-kill assay showed that the synergistic activity of PKH and an antibiotic reduced the bacterial counts below the lowest detectable limit after 24 h. These findings suggest that PKH has antibacterial activity, and may be important baseline data in future extensive studies of living marine resources as a source of compounds active against MRSA.

감초성분 Carbenoxolone Disodium의 항위염 효과 (Antigastritic Effect of Carbenoxolone Disodium from Glycyrrhizae Radix)

  • 조소연;이승호;최지영;신은명;강삼식;정정숙;정춘식
    • Toxicological Research
    • /
    • 제23권2호
    • /
    • pp.165-172
    • /
    • 2007
  • Glycyrrhizae Radix, the dried roots of Glycyrrhiza glabra or Glycyrrhiza uralensis Fischer(Legumino-sae), has been used as a medicine for treatment of imflammation, arthritis, respiratory ailment, skin diseases and liver problems. The purpose of this study was to examine the effect of 70% ethanol extract, 18-${\beta}$-glycyrrhetinic acid, glycyrol and carbenoxolone disodium from Glycyrrhizae Radix on gastritis and gastric cancer. Using these materials, we tested antibacterial activity against Helicobacter pylori, antigastritic activity for HCI-ethanol-induced gastric lesion and the pylorus ligated gastric secretion with rats, and cell viability in gastric cancer cell. 18-${\beta}$-glycyrrhetinic acid and carbenoxolone disodium decreased the volume of gastric secretion and acid output in pylorus ligated rats. Also, carbenoxolone disodium had a strong effect of antibacterial activity on H. pylori. In addition 18-${\beta}$-glycyrrhetinic acid and glycyrol reduced cell viability in human gastric cancer cells(AGS and SNU638 cell) in dose-dependent manner. The reduction of total acid output and gastric secretion as well as the anti-bacterial activity against H. pylori might account for the antigastritic effects of carbenoxolone disodium.

Anti-Salmonella activity of a flavonone from Butea frondosa bark in mice

  • Mishra, Uma Shankar;Dutta, Noton Kumar;Mazumdar, Kaushiki;Mahapatra, Santosh Kumar;Chakraborty, Pronobesh;Dastidar, Sujata G
    • Advances in Traditional Medicine
    • /
    • 제8권4호
    • /
    • pp.339-348
    • /
    • 2008
  • Butea frondosa has been used traditionally as a topical formulation in the treatment of many diseases and disorders. Two compounds [BF-1 (crystalline flavonol quercetin) and BF-2 (tannin) from ethyl acetate fraction of ethanolic extract] were isolated from the bark of Butea frondosa. The stereostructures of the compounds were determined on the basis of chemical and physicochemical evidence. BF-1 and BF-2 were screened in vitro for possible antibacterial property against 112 bacteria comprising 3 genera of Gram-positive and 12 genera of Gram-negative types. It was found that both BF-1 and BF-2 exhibited inhibitory activity against several bacteria. Most of these strains were inhibited by BF-1 at $50-200\;{\mu}g/ml$, while BF-2 ($MIC_{50}$ $400\;{\mu}g/ml$) was much less active. The bacteria could be arranged in the decreasing order of sensitivity towards BF-1 in the following manner: S. aureus, Bacillus spp., Salmonella spp., Vibrio spp., Shigella spp., E. coli and Pseudomonas spp. The $MIC_{50}$ of the compound was $50\;{\mu}g/ml$ while the $MIC_{90}$ was $100\;{\mu}g/ml$. The decreasing order of sensitivity towards BF-2 was V. cholerae, Bacillus spp., S. aureus, V. parahaemolyticus, Salmonella spp. and Proteus spp. BF-1 was bactericidal in action. In vivo studies with this extract showed that it could offer statistically significant protection (p < 0.01) to mice challenged with a virulent bacterium. The inhibitory activity of Butea frondosa against Gram-positive and Gram-negative bacteria indicates its usefulness in the treatment of common bacterial infections. The potentiality of BF-1 as an antibacterial agent may be confirmed further by pharmacological studies.

Methanolic Extract of Plumbago Zeylanica - A Remarkable Antibacterial Agent Against Many Human and Agricultural Pathogens

  • Singh, Mukesh Kumar;Pandey, Ajit;Sawarkar, Hemant;Gupta, Anshita;Gidwani, Bina;Dhongade, Hemant;Tripathi, Dulal Krishna
    • 대한약침학회지
    • /
    • 제20권1호
    • /
    • pp.18-22
    • /
    • 2017
  • Objectives: The current investigation was carried out to determine the cytotoxic and the antimicrobial activities of methanolic extracts of Plumbago zeylanica. Methods: The stems, leaves, and whole plants were air dried and extracted with methanol by using a Soxhlet extractor for 72 hours at $55-60^{\circ}C$. The antimicrobial activities were determined from the zones of inhibition, which were measured by using the agar well diffusion method, and the cytotoxicity assays were performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay method. Results: The methanolic extracts of the stem and the leaves of Plumbago zeylanica were tested against six bacterial species and nine fungal species, and both extracts showed antimicrobial activity in a dose-dependent manner. The leaf extract of Plumbago zeylanica showed maximum antimicrobial activity against both Staphylococcus aureus sub sp aureus and Fusarium oxysporum. The stem extract was found to be more antimicrobial against the Pseudomonas aeruginosa and the Penicillium expansum species. MTT assays were used to test the cytotoxicity of the whole plant extract in the HCT-116 and the K-562 cell lines, and that extract was shown to have weak cytotoxicity in both cell lines. Conclusion: In the present study, the methanolic stem extracts of Plumbago zeylanica were found to possess remarkable antibacterial activities against many human and agricultural pathogens. The extracts were also found to possess significant antifungal activities, but the antifungal activities were less than the antibacterial activities. Finally, the extracts were found to have weak cytotoxicities in the HCT-116 and the K-562 cell lines.

A novel antimicrobial-containing nanocellulose scaffold for regenerative endodontics

  • Victoria Kichler ;Lucas Soares Teixeira ;Maick Meneguzzo Prado ;Guilherme Colla ;Daniela Peressoni Vieira Schuldt ;Beatriz Serrato Coelho ;Luismar Marques Porto ;Josiane de Almeida
    • Restorative Dentistry and Endodontics
    • /
    • 제46권2호
    • /
    • pp.20.1-20.11
    • /
    • 2021
  • Objectives: The aim of this study was to evaluate bacterial nanocellulose (BNC) membranes incorporated with antimicrobial agents regarding cytotoxicity in fibroblasts of the periodontal ligament (PDLF), antimicrobial activity, and inhibition of multispecies biofilm formation. Materials and Methods: The tested BNC membranes were BNC + 1% clindamycin (BNC/CLI); BNC + 0.12% chlorhexidine (BNC/CHX); BNC + nitric oxide (BNC/NO); and conventional BNC (BNC; control). After PDLF culture, the BNC membranes were positioned in the wells and maintained for 24 hours. Cell viability was then evaluated using the MTS calorimetric test. Antimicrobial activity against Enterococcus faecalis, Actinomyces naeslundii, and Streptococcus sanguinis (S. sanguinis) was evaluated using the agar diffusion test. To assess the antibiofilm activity, BNC membranes were exposed for 24 hours to the mixed culture. After sonicating the BNC membranes to remove the remaining biofilm and plating the suspension on agar, the number of colony-forming units (CFU)/mL was determined. Data were analyzed by 1-way analysis of variance and the Tukey, Kruskal-Wallis, and Dunn tests (α = 5%). Results: PDLF metabolic activity after contact with BNC/CHX, BNC/CLI, and BNC/NO was 35%, 61% and 97%, respectively, compared to BNC. BNC/NO showed biocompatibility similar to that of BNC (p = 0.78). BNC/CLI showed the largest inhibition halos, and was superior to the other BNC membranes against S. sanguinis (p < 0.05). The experimental BNC membranes inhibited biofilm formation, with about a 3-fold log CFU reduction compared to BNC (p < 0.05). Conclusions: BNC/NO showed excellent biocompatibility and inhibited multispecies biofilm formation, similarly to BNC/CLI and BNC/CHX.

Anti-inflammatory Effects of Ethanolic Extracts from Codium fragile on LPS-Stimulated RAW 264.7 Macrophages via Nuclear Factor kappaB Inactivation

  • Yoon, Ho-Dong;Jeong, Eun-Ji;Choi, Ji-Woong;Lee, Min-Sup;Park, Myoung-Ae;Yoon, Na-Young;Kim, Yeon-Kye;Cho, Deuk-Moon;Kim, Jae-Il;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • 제14권4호
    • /
    • pp.267-274
    • /
    • 2011
  • Bacterial lipopolysaccharide (LPS) induces expression of pro-inflammatory cytokines and enzymes producing nitric oxide (NO) and prostaglandins (PGs) in immune cells. This process is mediated by the activation of nuclear factor kappaB (NF-${\kappa}B$). In this study, we investigated the anti-inflammatory characteristics of Codium fragile ethanolic extract (CFE) mediated by the regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) using LPS-stimulated murine macrophage RAW 264.7 cells. CFE significantly inhibited LPS-induced NO and $PGE_2$ production in a dose-dependent manner and suppressed the expression of iNOS and COX-2 proteins in LPS-stimulated RAW 264.7 cells with no cytotoxicity. Pro-inflammatory cytokines, such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor-${\alpha}$, were significantly reduced by treatment of CFE in LPS-stimulated RAW 264.7 cells. CFE inhibited the promoter activity of (NF)-${\kappa}B$ in LPS-stimulated macrophages. Treatment with CFE suppressed translocation of the NF-${\kappa}B$ p65 subunit by preventing proteolytic degradation of inhibitor of ${\kappa}B-{\alpha}$. These results indicate that the CFE-mediated inhibition of NO and $PGE_2$ production in LPS-stimulated RAW 264.7 cells is mediated through the NF-${\kappa}B$-dependent transcriptional downregulation of iNOS and COX-2, suggesting the potential of CFE as a nutraceutical with anti-inflammatory activity.