• 제목/요약/키워드: Anti-bacterial activity

Search Result 348, Processing Time 0.033 seconds

Effects of Anti-Microbial Materials on Storages of Low Salted Doenjang (항균물질을 첨가한 저식염 된장의 저장성)

  • Kim, Jeong-Rye;Kim, Yon-Kyung;Kim, Dong-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1864-1871
    • /
    • 2013
  • The effect of additives on the quality of low salted doenjang was investigated during storage. Amylase activity gradually decreased during storage and protease activity decreased after four weeks. The number of yeast was lower in the mustard or ethanol added groups without a difference in bacterial count. The L- and b-values decreased gradually during storage with lower total color difference (${\Delta}E$) in garlic added doenjang. Gas production was reduced in the ethanol or mustard added groups. Titratable acidity and acid values were low in the ethanol and ethanol-garlic added ones. A reducing sugar content was higher in the groups with added additives. Ethanol decreased to the largest extent in mustard added doenjang. Amino-type nitrogen decreased in ethanol added doenjang, whereas ammonia-type nitrogen was low in the ethanol or mustard added groups. The taste, flavor, and overall acceptability of doenjang were significantly higher in the ethanol or garlic added groups than in the other groups.

Antibacterial Effect of Antibacterial Substance Produced by Lactobacillus amylovorus IMC-1 against Food Spoilage Bacteria (Lactobacillus amylovorus IMC-1에 의해서 생산되는 항균성 물질의 식품 오염세균에 대한 항균 효과)

  • Mok, Jong-Soo;Kim, Poong-Ho;Yu, Hyen-Duk;Kim, Ji-Hoe;Lee, Hee-Jung;Kim, Young-Mog
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.4
    • /
    • pp.346-351
    • /
    • 1999
  • To develop a lactic starter to produce antimicrobial substance for inhibiting the growth of a variety of foodborne spoilage bacteria in fermented foods, we investigated the anti-bacterial effect of the antibacterial substance, produced by Lactobacillus amylovorus IMC-1, against foodborne spoilage strains, and its sensitivity on the treatment of proteolytic enzymes. L. amylovorus IMC-1, which was isolated from a traditional cheese in Inner Mongolia, produced a maximum amount of antibacterial substance in the skim milk medium after 72 h incubation at 37$^{\circ}C$, and further incubation resulted in the same activity. The substance obtained from gel filtration inhibited all strains used such as Bacillus subtilis IFO 3025, Staphylococcus aureus IAM 1011, Listeria monocytogenes VTU 206, Escherichia coli RB, and Pseudomonas fragi IFO 3458 at the concentration of 20 units/ml. This substance was found to show bactericidal action against B. subtilis, E. coli, and Ps. fragi, and bacteriostatic activity against both Staph. aureus and L. monocytogenes. The bactericidal action was due to cellular Iysis. The substance is not organic acid, hydrogen peroxide and proteinaceous compound.

  • PDF

Antimicrobial Activities and Stability of Rhus Javanica L., Cinnamomum Verum and Rosmarinus Officinalis Extracts Used in the Manufacture of Cosmetics (화장품에 적용한 오배자·계피·로즈마리 추출물의 항균활성 및 안정성 검증)

  • Jeon, Hyeong Cheol;Lee, Jae-Nam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.1020-1033
    • /
    • 2020
  • This study attempted to investigate the usefulness of Rhus javanica L., Cinnamomum verum and Rosmarinus officinalis extracts which have antimicrobial and antioxidant effects without any harm on human health as natural preservatives. In terms of extraction, extraction by 70% ethanol and hot-water extraction were used for Cinnamomum verum and Rhus javanica L. respectively. For Rosmarinus officinalis, a mixed method (70% ethanol and hot-water extraction) was adopted. In terms of experimental methods, antimicrobial effects, antioxidant activity through DPPH and safety and stability of cosmetics were assessed, and a challenge test was performed, and the results found the followings: According to an antimicrobial test, good antimicrobial effects were found in bacteria (Rhus javanica L. extract) and fungi (Cinnamomum verum extract). In contrast, the Rosmarinus officinalis extract was set aside because of poor antimicrobial activity. In the mixed extract (Rhus javanica L. + Cinnamomum verum), antimicrobial effects were observed in 'complex C (mixed in a 1:1 ratio)' while both inhibitory and sterilizing effects were found in 5 different test strains at minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). In addition, antioxidant effects were detected in non-mixed extract and mixed extract ('complex C'). Furthermore, a test on cosmetics which adopted '10% complex C' instead of synthetic preservative revealed safety and stability. Therefore, this study has confirmed the potential of the Rhus javanica L., Cinnamomum verum and Rosmarinus officinalis extracts as materials for natural preservatives.

Antioxidant Properties of Various Microorganisms Isolated from Arctic Lichen Stereocaulon spp. (북극 지의류 Stereocaulon spp로부터 분리한 여러 미생물의 항산화 성질)

  • Kim, Mi-Kyeong;Park, Hyun;Oh, Tae-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.350-357
    • /
    • 2013
  • Lichens are symbiotic organisms composed of fungi, algae, or cyanobacteria which are able to survive in extreme environmental conditions ranging from deserts to polar areas. Some lichen symbionts produce a wide range of secondary metabolites that have many biological activities such as antibacterial, antifungal, antiviral, antitumor, antioxidant and anti-inflammatory etc. Among the symbionts of lichens, of the bacterial communities of lichen symbionts little is known. In this study, we isolated 4 microbial species from the Arctic lichen Stereocaulon spp. and evaluated their antioxidant properties using 1,1-diphenyl-2-picryl-hydrazyl assay as well as 2,2'-azino-bis(3-ethyl benzothiazoline-6-sulphonic acid) assay. Total phenolic contents and total flavonoid contents were also measured. A potent radical scavenging activity was detected in a number of the lichen extracts. Among the 4 species tested in this study, the ethyl acetate extract of Bosea vestrisii 36546(T) exhibited the strongest free radical scavenging activity, with an inhibition rate of 86.8% in DPPH and 75.2% in ABTS assays. Overall, these results suggest that lichen-bacteria could be a potential source of natural antioxidants.

Mechanism underlying NO-induced apoptosis in human gingival fibroblasts

  • Hwang, In-Nam;Jeong, Yeon-Jin;Jung, Ji-Yeon;Lee, Jin-Ha;Kim, Kang-Moon;Kim, Won-Jae
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.7-14
    • /
    • 2009
  • Nitric oxide (NO) acts as an intracellular messenger at the physiological level but can be cytotoxic at high concentrations. The cells within periodontal tissues, such as gingival and periodontal fibroblasts, contain nitric oxide syntheses and produce high concentrations of NO when exposed to bacterial lipopolysaccharides and cytokines. However, the cellular mechanisms underlying NO-induced cytotoxicity in periodontal tissues are unclear at present. In our current study, we examined the NO-induced cytotoxic mechanisms in human gingival fibroblasts (HGF). Cell viability and the levels of reactive oxygen species (ROS) were determined using a MTT assay and a fluorescent spectrometer, respectively. The morphological changes in the cells were examined by Diff-Quick staining. Expression of the Bcl-2 family and Fas was determined by RT-PCR or western blotting. The activity of caspase-3, -8 and -9 was assessed using a spectrophotometer. Sodium nitroprusside (SNP), a NO donor, decreased the cell viability of the HGF cells in a dose- and time-dependent manner. SNP enhanced the production of ROS, which was ameliorated by NAC, a free radical scavenger. ODQ, a soluble guanylate cyclase inhibitor, did not block the SNP-induced decrease in cell viability. SNP also caused apoptotic morphological changes, including cell shrinkage, chromatin condensation, and DNA fragmentation. The expression of Bax, a member of the proapoptotic Bcl-2 family, was upregulated in the SNP-treated HGF cells, whereas the expression of Bcl-2, a member of the anti-apoptotic Bcl-2 family, was downregulated. SNP augmented the release of cytochrome c from the mitochondria into the cytosol and enhanced the activity of caspase-8, -9, and -3. SNP also upregulated Fas, a component of the death receptor assembly. These results suggest that NO induces apoptosis in human gingival fibroblast via ROS and the Bcl-2 family through both mitochondrial- and death receptor-mediated pathways. Our data also indicate that the cyclic GMP pathway is not involved in NO-induced apoptosis.

Water-holding Capacity and Antimicrobial Activity and of 1, 2-Hexanediol Galactoside Synthesized by β-Galactosidase (베타-갈락토시데이즈를 이용하여 합성한 1, 2-Hexanediol Galactoside의 보습력과 항균력에 대한 연구)

  • Kim, Yi-Ok;Jung, Kyung-Hwan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.373-379
    • /
    • 2017
  • We carried out the enzymatic synthesis of 1, 2-hexanediol galactoside (HD-gal) by transgalactosylation reaction using recombinant Escherichia coli ${\beta}-galactosidase$ (${\beta}-gal$). The amounts of ${\beta}-gal$ and 1, 2-hexanediol (HD), pH, and temperature, respectively, were first optimized (${\beta}-Gal$, 4.8 U/mL; HD, 75 mM; pH, 7.0; temperature, $37^{\circ}C$). Under these optimal conditions, about 96% HD was converted to HD-gal. When we investigated the water holding capacities (WHCs) of HD and HD-gal using pig epidermis in the concentrations of 84.4, 126.6, 168.8, 211.0 mM, WHC of HD-gal was superior to HD. In particular, at 168.8 mM HD and HD-gal, WHC of HD-gal showed about 20% greater than that of HD. However, it was observed that MIC values against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus of HD-gal were about three to ten times greater than those of HD, although MIC value of HD-gal against Enterococcus faecalis was almost the same as that of HD. Finally, it was concluded that the covalent bonding of a galactose molecule to HD (transgalactosylation) resulted in an increase in WHC of HD-gal and a decrease in anti-bacterial activity.

High-Level Expression of T4 Endonuclease V in Insect Cells as Biologically Active Form

  • Kang, Chang-Soo;Son, Seung-Yeol;Bang, In-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1583-1590
    • /
    • 2006
  • T4 endonuclease V (T4 endo V) [EC 3. 1. 25. 1], found in bacteriophage T4, is responsible for excision repair of damaged DNA. The enzyme possesses two activities: a cyclobutane pyrimidine dimer DNA glycosylase (CPD glycosylase) and an apyrimidic/apurinic endonuclease (AP lyase). T4 denV (414 bp cDNA) encoding T4 en do V (138 amino acid) was synthesized and expressed using either an expression vector, pTriEx-4, in E. coli or a baculovirus AcNPV vector, pBacPAK8, in insect cells. The recombinant His-Tag/T4 endo V (rHis-Tag/T4 endo V) protein expressed from bacteria was purified using one-step affinity chromatography with a HiTrap Chelating HP column and used to make rabbit anti-His-Tag/T4 endo V polyclonal antibody for detection of recombinant T4 endo V (rT4 endo V) expressed in insect cells. In the meantime, the recombinant baculovirus was obtained by cotransfection of BacPAK6 viral DNA and pBP/T4 endo V in Spodoptera frugiperda (Sf21) insect cells, and used to infect Sf21 cells to overexpress T4 endo V protein. The level of rT4 endo V protein expressed in Sf21 cells was optimized by varying the virus titers and time course of infection. The optimal expression condition was set as follows; infection of the cells at a MOI of 10 and harvest at 96 h post-infection. Under these conditions, we estimated the amount of rT4 endo V produced in the baculovirus expression vector system to be 125 mg/l. The rT4 endo V was purified to homogeneity by a rapid procedure, consisting of ion-exchange, affinity, and reversed phase chromatographies, based on FPLC. The rT4 endo V positively reacted to an antiserum made against rHis-Tag/T4 endo V and showed a residual nicking activity against CPD-containing DNA caused by UV. This is the first report to have T4 endo V expressed in an insect system to exclude the toxic effect of a bacterial expression system, retaining enzymatic activity.

Effects of Foreign Plant Extracts on Cell Growth and Biofilm Formation of Streptococcus Mutans (해외 자생식물추출물이 Streptococcus mutans의 세포 성장 및 생물막 형성에 미치는 영향)

  • Moon, Kyung Hoon;Lee, Yun-Chae;Kim, Jeong Nam
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.712-723
    • /
    • 2019
  • Chemically synthesized compounds are widely used in oral hygiene products. However, excessively long-term use of these chemicals can cause undesirable side effects such as bacterial tolerance, allergy, and tooth discoloration. To solve these issues, significant effort is put into the search for natural antibacterial agents. The aim of this study was to assess the extracts of foreign native plants that inhibit the growth and biofilm formation of Streptococcus mutans. Among the 300 foreign plant extracts used in this study, Chesneya nubigena (D. Don) Ali extract had the highest antimicrobial activity relatively against S. mutans with a clear zone of 9 mm when compared to others. This plant extract also showed anti-biofilm activity and bacteriostatic effect (minimal bactericidal concentration [MBC], 1.5 mg/ml). In addition, the plant extracts of 19 species decreased the ability of S. mutans to form biofilm at least a 6-fold in proportion to the tested concentrations. Of particular note, C. nubigena (D. Don) Ali extract was found to inhibit biofilm formation at the lowest concentration tested effectively. Therefore, our results reveal that C. nubigena (D. Don) Ali extract is a potential candidate for the development of antimicrobial substitutes, which might be effective for caries control as well, as demonstrated by its inhibitory effect on the persistence and pathogenesis of S. mutans.

Reduction of VOCs and the Antibacterial Effect of a Visible-Light Responsive Polydopamine (PDA) Layer-TiO2 on Glass Fiber Fabric (Polydopamine (PDA)-TiO2 코팅 유리섬유 직물을 이용한 VOCs의 저감 성능 및 항균성 연구)

  • Park, Seo-Hyun;Choi, Yein;Lee, Hong Joo;Park, Chan-gyu
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.540-547
    • /
    • 2021
  • Background: Indoor air pollutants are caused by a number of factors, such as coming in from the outside or being generated by internal activities. Typical indoor air pollutants include nitrogen dioxide and carbon monoxide from household items such as heating appliances and volatile organic compounds from building materials. In addition there is carbon dioxide from human breathing and bacteria from speaking, coughing, and sneezing. Objectives: According to recent research results, most indoor air pollution is known to be greatly affected by internal factors such as burning (biomass for cooking) and various pollutants. These pollutants can have a fatal effect on the human body due to a lack of ventilation facilities. Methods: We fabricated a polydopamine (PDA) layer with Ti substrates as a coating on supported glass fiber fabric to enhance its photo-activity. The PDA layer with TiO2 was covalently attached to glass fiber fabric using the drop-casting method. The roughness and functional groups of the surface of the Ti substrate/PDA coated glass fiber fabric were verified through infrared imaging microscopy and field emission scanning electron microscopy (FE-SEM). The obtained hybrid Ti substrate/PDA coated glass fiber fabric was investigated for photocatalytic activity by the removal of ammonia and an epidermal Staphylococcus aureus reduction test with lamp (250 nm, 405 nm wavelength) at 24℃. Results: Antibacterial properties were found to reduce epidermal staphylococcus aureus in the Ti substrate/PDA coated glass fiber fabric under 405 nm after three hours. In addition, the Ti substrate/PDA coated glass fiber fabric of VOC reduction rate for ammonia was 50% under 405 nm after 30 min. Conclusions: An electron-hole pair due to photoexcitation is generated in the PDA layer and transferred to the conduction band of TiO2. This generates a superoxide radical that degrades ammonia and removes epidermal Staphylococcus aureus.

Protective effects of Portulaca oleracea against cerulein-induced acute pancreatitis (마치현(馬齒莧)의 급성 췌장염 보호 효과)

  • Gwak, Tae-Sin;Kim, Dong-Goo;Kim, Ju-Young;Bae, Gi-Sang;Choi, Sun-Bok;Jo, Il-Joo;Shin, Joon-Yeon;Lee, Sung-Kon;Kim, Myoung-Jin;Kim, Min-Jun;Song, Ho-Joon;Park, Sung-Joo
    • The Korea Journal of Herbology
    • /
    • v.29 no.3
    • /
    • pp.11-17
    • /
    • 2014
  • Objective : Portulaca oleracea (PO) has been used as an important traditional medicine for inflammatory and bacterial diseases in East Asia. However, the protective effects of PO on acute pancreatitis (AP) is not well-known. Therefore, this study was performed to identify the anti-inflammatory and prophylactic effects of PO on cerulein-induced AP. Methods : AP was induced in mice via intraperitoneal injection of supramaximal concentrations of the stable cholecystokinin analogue cerulein ($50{\mu}g/kg$) given every hour for 6 times. Water extracts of PO (100, 300, or 500 mg/kg) was administrated intra-peritoneally 1 h prior to the first injection of cerulein. The mice were killed at 6 h after the final cerulein injection. Pancreas and lung were rapidly removed for morphologic and histochemical examination, myeloperoxidase (MPO) assay. Blood samples were taken to determine serum amylase and lipase activities. Results : Administration of PO significantly inhibited pancreatic weight/body weight ratio, pancreas and lung histological injury. And MPO activity which indicates neutrophil infiltration was inhibited by PO extracts on cerulein-induced pancreatitis. In addition, PO administration inhibited digestive enzymes such as serum amylase and lipase activity on cerulein-induced pancreatitis. Conclusion : Our results could suggest that pre-treatment of PO reduces the severity of cerulein-induced AP, thereby, PO could be used as a protective agent against AP. Also, this study could give a clinical basis that PO could be a drug or agent to prevent AP.