Browse > Article
http://dx.doi.org/10.4014/kjmb.1303.03004

Antioxidant Properties of Various Microorganisms Isolated from Arctic Lichen Stereocaulon spp.  

Kim, Mi-Kyeong (Department of Pharmaceutical Engineering, SunMoon University)
Park, Hyun (Korea Polar Research Institute (KOPRI))
Oh, Tae-Jin (Department of Pharmaceutical Engineering, SunMoon University)
Publication Information
Microbiology and Biotechnology Letters / v.41, no.3, 2013 , pp. 350-357 More about this Journal
Abstract
Lichens are symbiotic organisms composed of fungi, algae, or cyanobacteria which are able to survive in extreme environmental conditions ranging from deserts to polar areas. Some lichen symbionts produce a wide range of secondary metabolites that have many biological activities such as antibacterial, antifungal, antiviral, antitumor, antioxidant and anti-inflammatory etc. Among the symbionts of lichens, of the bacterial communities of lichen symbionts little is known. In this study, we isolated 4 microbial species from the Arctic lichen Stereocaulon spp. and evaluated their antioxidant properties using 1,1-diphenyl-2-picryl-hydrazyl assay as well as 2,2'-azino-bis(3-ethyl benzothiazoline-6-sulphonic acid) assay. Total phenolic contents and total flavonoid contents were also measured. A potent radical scavenging activity was detected in a number of the lichen extracts. Among the 4 species tested in this study, the ethyl acetate extract of Bosea vestrisii 36546(T) exhibited the strongest free radical scavenging activity, with an inhibition rate of 86.8% in DPPH and 75.2% in ABTS assays. Overall, these results suggest that lichen-bacteria could be a potential source of natural antioxidants.
Keywords
ABTS; antioxidant property; Arctic lichen; DPPH; Stereocaulon spp; TPC;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhang S, Liu L, Su Y, Li H, Sun Q, Liang X, et al. 2011. Antioxidative activity of lactic acid bacteria in yogurt. Afr. J. Microbial. Res. 5: 5149-5201.
2 Arnao MB, Cano A, Acosta M. 2010. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 73: 239-244.
3 Zhishen JT, Mengcheng WJ. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on super oxide radicals. Food Chem. 64: 555-559.   DOI
4 Alegre I, Vinas I, Usall J, Anguera M, Altisent R, Abadias M. 2013. Antagonistic effect of Pseudomonas graminis CPA-7 against foodborne pathogens in fresh-cut apples under simulated commercial conditions. Food Microbiol. 33: 139-148.   DOI
5 Alegre I, Vinas I, Usall J, Teixido N, Figge MJ, Abadias M. 2013. Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis. Food Microbiol. 34: 390-399.   DOI
6 Baik KS, Park SC, Kim EM, Lim CH, Seong CN. 2010. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int. J. Syst. Evol. Microbiol. 60: 134-139.   DOI
7 Bates ST, Cropsey GWG, Caporaso G, Knight R, Fierer N. 2011. Bacterial communities associated with the lichen symbiosis. Appl. Environ. Microbiol. 77: 1309-1314.   DOI
8 Benzie IFF, Strain JJ. 1996. The ferric reducing antioxidant ability of plasma (FRAP) as a measure of "antioxidant power" : the FRAP assay. Anal. Biochem. 239: 70-76.   DOI
9 Benzie IFF, Strain JJ. 1999. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method. Enzymol. 299: 15-27.   DOI
10 Brodo IM, Sharnoff SD, Sharnoff S. 2001. Stereocaulon (pp. 663-670) In, Lichens of North America. Yale University Press, New Haven.
11 Bhattarai HD, Kim T, Oh H, Yim JH. 2008. Stereocalpin A, a bioactive cyclic depsipeptide from the Antarctic lichen Stereocaulon alpinum. Tetrahedron Lett. 49: 29-31.   DOI
12 Bhattarai HD, Kim T, Oh H, Yim JH. 2013. A new pseudodepsidone from the Antarctic lichen Stereocaulon alpinum and its antioxidant, antibacterial activity. J. Antibiot. (Tokyo). [Epub ahead of print]
13 Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 26: 1199-1200.
14 Cardinale M, Puglia AM, Grube M. 2006. Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol. Ecol. 57: 484-495.   DOI
15 Cardinale M, Jr Castro JVD, Müller H, Berg G, Grube M. 2008. In situanalysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol. Ecol. 66: 63-71.   DOI
16 Coleman JJ, Ghosh S, Okoli I, Mylonakis E. 2011. Antifungal activity of microbial secondary metabolites. PLoS One. 6: e25321.   DOI
17 Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. 2004. Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Physic. India. 52: 794-804.
18 Gardner PT, White TAC, McPhail DB, Duthie GG. 2000. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem. 68: 471-474.   DOI
19 Gonzalez I, Ayuso-Sacido A, Anderson A, Genilloud O. 2005. Actinomycetes isolated from lichens: Evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol. Ecol. 54: 401-415.   DOI
20 Hawksworth DL, Kirk PM, Sutton BC, Pegler DN. 1995. Ainsworth & Bisby's dictionary of the fungi. 8th edition. CAB international, Wallingford.
21 Grice HC. 1986. Safety evaluation of butylatedhydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem. Toxicol. 24: 1127-1130.
22 Halliwell B. 1997. Antioxidant and human disease: a general introduction. Nutr. Rev. 55: 44-49.
23 Halvorsen BL, Holte K, Myhrstad MCW, Barikmo I, Hvattum E, Remberg SF, et al. 2002. A systematic screening of total antioxidants in dietary plants. J. Nutr. 132: 461-471.
24 Ingolfsdottir K, Chung GAC, Skulason VG, Gissurarson SR, Vilhelmsdottir M. 1998. Antimycobacterial activity of lichens metabolites in vitro. Eur. J. Pharm. Sci. 6: 141-144.   DOI
25 Kosani MM, Rankovi BR, Stanojkovi TP. 2012. Antioxidant, antimicrobial and anticancer activities of three Parmelia species. J. Sci. Food Agric. 9: 1909-1916.
26 Kullisaar T, Zilmer M, Mikelsaar M, Vihalemm T, Annuk H, Kairane C, et al. 2002. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 70: 388-391.
27 La Scola B, Mallet MN, Grimont PA, Raoult D. 2003. Bosea eneae sp. nov, Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov, isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996) Int. J. Syst. Evol. Microbiol. 53: 15-20.   DOI
28 Lauterwein M, Oethinger M, Belsner K, Peters T, Marre R. 1995. In vitro activities of the lichen secondary metabolites vulpinic acid,(+)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob. Agents Chemother. 39: 2541- 2543.   DOI
29 Lawrey JD. 1989. Lichen secondary compounds: evidence for a correspondence between antiherbivore and antimicrobial function. J. Bryol. 92: 326-328.   DOI
30 Manojlovi N, Rankovi B, Kosani M, Vasiljevi P, Stanojkovi T. 2012. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine. 19: 1166-1172.   DOI
31 Lin MY, Chang FY. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digest. Dis. Sci. 45: 1617-1622.   DOI
32 Morita H, Tsuchiya T, Kishibe K, Noya S, Shiro M, Hirasawa Y. 2009. Antimitotic activity of lobaric acid and a new benzofuran, sakisacaulon A from Stereocaulonsasakii. Bioorg. Med. Chem. 19: 3679-3681.   DOI
33 Luo H, Yamamoto Y, Jeon HS, Liu YP, Jung JS, Koh YJ, et al. 2011. Production of anti-Helicobacter pylori metabolite by the lichen-forming fungus Nephromopsis pallescens. J. Microbiol. 49: 66-70.   DOI
34 Luo H, Yamamoto Y, Liu Y, Jung JS, Kahng HY, Koh YJ, et al. 2010. The in vitro antioxidant properties of Chinese highland lichens. J. Microbiol. Biotechnol. 20: 1524-1528.   DOI
35 Molnár K, Farkas E. 2010. Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch. C. 65: 157-173.
36 Muller K. 2001. Pharmaceutically relevant metabolites from lichens. Appl. Microbiol. Biotechnol. 56: 9-16.   DOI
37 Nash III TH. 1996. Introduction. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 1-7.
38 Pietta PG. 2000. Flavonoids as Antioxidants. J. Nat. Prod. 63: 1035-1042.   DOI
39 Oksanen I. 2006. Ecological and biotechnological aspects of lichens. J. Microbial. Biotechnol. 73: 723-734.   DOI
40 Paudel B, Bhattarai HD, Prasad Pandey D, Hur JS, Hong SG, Kim IC, et al. 2012. Antioxidant, antibacterial activity and brine shrimp toxicity test of some mountainous lichens from Nepal. Biol. Res. 45: 387-391.   DOI
41 Paudel B, Bhattarai HD, Lee JS, Hong SG, Shin HW, Yim JH. 2008. Antibacterial potential of Antarctic lichens against human pathogenic Gram-positive bacteria. Phytother. Res. 22: 1269-1271.   DOI
42 Prior RL, Wu X, Schaich K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in food and dietary supplements. J. Agric. Food Chem. 53: 4290-4302.   DOI
43 Rice-Evans CA, Nicholas J, Miller J, Paganga G. 1996. Structure- antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20: 933-956.   DOI
44 Rankovi B, Rankovi D, Mari D. 2010. Antioxidant and antimicrobial activity of some lichen species. Mikrobiologiia 79: 812-818.
45 Rice-Evans CA, Miller NJ, Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152-159.   DOI
46 Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. 1995. The relative activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22: 375-383.   DOI
47 Seo C, Sohn JH, Park SM, Yim JH, Lee HK, Oh H. 2008. Usimines A-C, bioactive usnic acid derivatives from the Antarctic lichen Stereocaulon alpinum. J. Nat. Prod. 71: 710-712.   DOI
48 Thadhani VM, Choudhary MI, Ali S, Omar I, Siddique H, Karunaratne V. 2011. Antioxidant activity of some lichen metabolites. Nat. Prod. Res. 25: 1827-1837.   DOI
49 Silva NMV, Pereira TM, Filho SA, Matsuura T. 2011. Taxonomic characterization and antimicrobial activity of actinomycetes associated with foliose lichens from the Amazonian ecosystem. Aust. J. Basic. Appl. Sci. 5: 910-918.
50 Slinkard K, Singleton VL. 1977. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 28: 49-55.
51 Stocker-Wörgötter E. 2008. Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat. Prod. Rep. 25: 188-200.   DOI
52 Wichi HP. 1988. Enhanced tumor development by butylatedhydroxyanisole (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food Chem. Toxicol. 26: 717-723.   DOI
53 Yamamoto Y. 2002. Discharge and germination of lichen ascospores in the laboratory. Lichenol. 1: 11-22.