• Title/Summary/Keyword: Anti-bacteria

Search Result 729, Processing Time 0.037 seconds

Uses and Characteristics of Korean Traditional Incense (우리나라 전통 향의 용도와 성격적 특성)

  • Lee, Kyung-Hee;Lee, Joo-Young;Kwon, Young-Suk
    • Fashion & Textile Research Journal
    • /
    • v.7 no.4
    • /
    • pp.394-400
    • /
    • 2005
  • The purpose of this study is to investigate historical background which uses and characteristics of Korean traditional incense and how to use it in clothes. Incense was at first introduced to Korea in the period of King Nulji of Shilla dynasty. First introduction to this nation, incense was already regarded as divine. It was then developed with five main uses, tribute, fragrance, purification, anti bacteria, and cure. Incense used by fragrance and anti-bacteria in clothes. It make emit a fragrance from the clothes or decorate clothes with ornaments. Incense was also to prevent clothes or books from being damaged by insects and maintain them over a long period. It used one of the factor for beauty of costume.

Preparation of Tuna Skin Byproduct Film Containing Pinus thunbergii Cone Extract

  • Bak, Jing-Gi;Kim, Jin;Ohk, Seung-Ho
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.360-367
    • /
    • 2020
  • Tuna skin byproduct extract (TSB) was used as a biocompatibility film base material, and its composite film with gellan gum (GG) was prepared. In addition, Pinus thunbergii cone extract (PTCE) was incorporated into the film to provide anti-oxidant and anti-bacteria activities. The tensile strength (TS) of the TSB/GG composite films increased with increasing GG content, whereas elongation at break (E) decreased. TSB/GG film at a ratio of 0.5:0.5 (w/w) showed the most desirable TS and E values. Based on scavenging free radical potentials and disc diffusion method results against growth of bacteria, antioxidant and anti-bacteria activities of films increased with increasing PTCE concentration. Accordingly, this study showed that TSB/GG could be used as a film material while the TSB/GG composite film containing PTCE can be utilized as functional packaging.

Studies on the Anti-bacterial, Anti-inflammatory and Anti-oxidant Effect of BPH (비피(鼻皮) 증류액의 항균, 소염, 항산화 작용에 대한 연구)

  • Kim, Ho-Seon;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.29 no.5
    • /
    • pp.45-53
    • /
    • 2014
  • Objectives : The purpose of the study is to test the antibacterial, anti-inflammatory and antioxidant effects of BPH, which is composed of Pini Densiflorae Nodi Lignum and Querci Acutissimae Fructus, Angelicae Gigantis Radix, Cnidii Rhizoma, Angelicae Dahuricae Radix, Angelicae Tenuissimae Radix. Method : Antibacterial and anti-inflammatory effects of BPH on Propionibacterium acnes, one of anaerobic bacteria species were evaluated by measuring the levels of 2,2-diphenyl-1-picrylhydrazyl (DPPH) elimination and lipid peroxidation. Result : When BPH was applied to CCD-986sk (Human normal fibroblast) to confirm the level of cytokine(tumor necrosis factor-alpha, interleukin-8), its level increased in proportion to that of BPH's concentration, which indicated dose-dependent relationship. Using the Disk diffusion to measure the bacterial growth inhibition zone varying BPH concentration, it was found that the antibacterial effect of BPH was less than that of erythromycin, the control group, but was higher than that of saline, and it increased with higher concentrations. In a liquid culture medium containing BPH, the growth rate of Propionibacterium acnes was decreased by more than 10% at 25% BPH. After adding P. acnes to THP-1 monocyte, and treated it with BPH, and measuring the concentration of TNF-a and IL-8, it was observed that the amount of TNF-alpha and IL-8 significantly decreased depending on the level of BPH concentration. The ability to eliminate DPPH increased with higher BPH concentration. The inhibition of lipid peroxidation was increased by BHT treatment in a dose-dependent manner. Conclusion : Using Propionibacterium acnes, an anaerobic bacteria, we confirmed that BPH has antibacterial, anti-inflammatory and antioxidant effects.

The Roles of Lactic Acid Bacteria for Control of Fungal Growth and Mycotoxins (곰팡이 생육 및 곰팡이 독소 생산의 억제에 있어서의 유산균의 역할)

  • Kim, Jihoo;Lee, Heeseob
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1128-1139
    • /
    • 2020
  • Over recent years, it has become evident that food and agricultural products are easily contaminated by fungi of Aspergillus, Fusarium, and Penicillium due to rapid climate change, which is not only a global food quality concern but also a serious health concern. Owing to consumers' interest in health, resistance to preservatives such as propionic acid and sorbic acid (which have been used in the past) is increasing, so it is necessary to develop a substitute from natural materials. In this review, the role of lactic acid bacteria as a biological method for controlling the growth and toxin production of fungi was examined. According to recent studies, lactic acid bacteria effectively inhibit the growth of fungi through various metabolites such as organic acids with low molecular weight, reuterin, proteinaceous compounds, hydroxy fatty acids, and phenol compounds. Lactic acid bacteria effectively reduced mycotoxin production by fungi via adsorption of mycotoxin with lactic acid bacteria cell surface components, degradation of fungal mycotoxin, and inhibition of mycotoxin production. Lactic acid bacteria could be regarded as a potential anti-fungal and anti-mycotoxigenic material in the prevention of fungal contamination of food and agricultural products because lactic acid bacteria produce various kinds of potent metabolic compounds with anti-fungal activities.

Modulation of Bacteria with a Combination of Natural Products in KIMCHI Fermentation

  • Kim, Jong-Deog;Shin, Jin-Hyuk;Seo, Hyo-Jin;Lim, Dong-Jung;Hong, Soon-Kang;Shin, Tai-Sun
    • KSBB Journal
    • /
    • v.23 no.2
    • /
    • pp.118-124
    • /
    • 2008
  • Three kinds of bacteria that influence Kimchi fermentation, Lactobacillus plantarium for acidity, Leuconostoc mesenteroides for ripening Kimchi, and Pichia membranifaciens for decreasing Kimchi quality, were regulated by natural products including Theae folium, Taraxacum coreanum, Brassica juncea, Astragali radix, Gynostemma pentaphyllum, Camellia japonica, Agaricus blazei, and Cordyceps militaris. The common prescription combined T. folium, T. coreanum and C. militaris and simultaneously regulated these 3 bacteria as follows: the growth of L. plantarium and P. membranifaciens were inhibited and L. mesenteroides was promoted. The most effective mixing ratio was T. folium: T. coreanum: C. militaris = 3:2:1. With this new prescription, deep flavor, extended preservation, and a special taste are expected in the Kimchi due to these natural products.

Anti-allergic Activity of the Extracts from Houttuynia cordata Thunb Fermented by Lactic Acid Bacteria (어성초(Houttuynia cordata Thunb) 유산균 발효물의 항알러지 활성)

  • Lee, Young-Guen;Kim, Yong-Min;Jeong, Hae-Jin;Lee, Bo kyung;Lee, Sung-Eun;Im, Dong-Soon;Kim, Han-Soo
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1355-1362
    • /
    • 2017
  • This study was performed to evaluate the possibility of application of lactic acid bacteria fermentation to increase the anti-allergic activity of the extracts from Houttuynia cordata Thunb. H. cordata Thunb was fermented on 25, 30, 35 and $40^{\circ}C$ for 5 days by two species of lactic acid bacteria, Leuconostoc mesenteroides 4395 and Lactobacillus sakei 383. The anti-allergic activity of water extracts of H. cordata Thunb was then analyzed both before and after fermentation. Anti-allergic activity was determined in vitro assays by using 5-lipoxygenase (5-LO), cyclooxygenase-2 (COX-2) and ${\beta}$-hexoseaminidase release of RBL-2H3 cells (degranulation marker). The extracts fermented at $35^{\circ}C$ by both bacteria had the highest inhibitory activities against 5-LO, and also higher than the control, and the one fermented at $30^{\circ}C$ by both bacteria had the highest inhibitory activity against COX-2. The degranulation of RBL-2H3 cells induced by IgE-antigen complex was estimated as ${\beta}$-hexoseaminidase release rate as reference of 100%, the release rates were inhibited in $25{\mu}g/ml$ of the extracts fermented at 30, 35 and $40^{\circ}C$ only by L. mesenteroides 4395. These results indicate that anti-allergic activity of H. cordata Thunb is increased by lactic acid bacteria fermentation.

Multifuctional Activities of Cultured extracts from Lactobacillus plantarum Ml as cosmeceutical ingredients.

  • S. Y. Vi;Lee, J. I;E. J. Han;G. J. Jung
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.243-244
    • /
    • 2003
  • The effects of Lactic acid bacteria have been investigated on anti-tumor. cholesterol reduction in blood. promotion of immune and skin-beauty. We are focused on cosmeceutical activity of Lactic acid bacteria (LAB). Ml, which is found in Korean traditional food. Kimchi The LAB.Ml has been identified as Lactobacillus plantarum Ml and individually cultured with Soybean soup and Soybean-Curd whey, until the total acidity has been reached the highest. After then, cell-free extracts from Ml have been used for the following studies. We assessed the effect of Lactobacillus plantarum Ml on the depigmentation of B16FlO melanoma cell. The melanin content of cells was decreased with 1-3% of cultured extracts. The tyrosinase activity was reduced by cell-free extracts of Lactobacillus plantarum Ml. Anti-aging and anti-oxidative activity of Ml cultured extract was also studied in NIH-3T3 human fibroblast cells. It showed that induction of cell proliferation. collagen synthesis and free radical scavenging activity. Additional studies for anti-fungal and anti-acne activity were also detected on Staphylococcus aureus and Propionibacterium acnes, respectively. These results suggest that cultured extract of Lactobacillun plantarum Ml would be used for cosmeceutical ingredients through multifunctional reaction on skin such as whitening, anti-wrinkle. anti-oxidation and anti-acnes.

  • PDF

Anti-Allergy Effect of Lactic Acid Bacteria (유산균의 항알레르기 효과)

  • Ham, Jun-Sang;Kim, Hyun-Soo;Noh, Young-Bae;Chae, Hyun-Seok;Ahn, Chong-Nam;Han, Gi-Sung;Choi, Suk-Ho;Jeong, Seok-Geun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.21-25
    • /
    • 2007
  • This review summarizes the cause of allergy and control by lactic acid bacteria. Atopic diseases such as asthma, rhinitis, eczema and food allergy have increased in most industrialized countries of the world during the last 20 years. The reasons for this increase are not clear and different hypotheses have been assessed including increased exposure to sensitizing allergens or decreased stimulation of the immune system during critical periods of development. Probiotic bacteria, which beneficially affect the host by improving its microbial balance, may mediate anti-allergenic effects by immune stimulation. Although more clinical evidences are required, the possible role of specific LAB strains in the prevention of allergic diseases has become more evident. since the role of functional food is important for prevention, it is expected for the more anti-allergy fermented milk products to be on the market.

  • PDF

Anti-Inflammatory Response in TNFα/IFNγ-Induced HaCaT Keratinocytes and Probiotic Properties of Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474

  • Ji Yeon Lee;Jeong‐Yong Park;Yulah Jeong;Chang‐Ho Kang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1039-1049
    • /
    • 2023
  • Atopic dermatitis (AD) is a chronic inflammatory disease caused by immune dysregulation. Meanwhile, the supernatant of lactic acid bacteria (SL) was recently reported to have anti-inflammatory effects. In addition, HaCaT keratinocytes stimulated by tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) are widely used for studying AD-like responses. In this study, we evaluated the anti-inflammatory effects of SL from lactic acid bacteria (LAB) on TNF-α/IFN-γ-induced HaCaT keratinocytes, and then we investigated the strains' probiotic properties. SL was noncytotoxic and regulated chemokines (macrophage-derived chemokine (MDC) and thymus and activation-regulated chemokine (TARC)) and cytokines (interleukin (IL)-4, IL-5, IL-25, and IL-33) in TNF-α/IFN-γ-induced HaCaT keratinocytes. SL from Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474 decreased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). Furthermore, the safety of the three strains was demonstrated via hemolysis, bile salt hydrolase (BSH) activity, and toxicity tests, and the stability was confirmed under simulated gastrointestinal conditions. Therefore, L. rhamnosus MG4644, L. paracasei MG4693, and Lc. lactis MG5474 have potential applications in functional food as they are stable and safe for intestinal epithelial cells and could improve atopic inflammation.

Production of Polyphenols and Flavonoids and Anti-Oxidant Effects of Lactic Acid Bacteria of Fermented Deer Antler Extract

  • Kim, Hyun-Kyoung;Choi, Kang-Ju;Ahn, Jong-Ho;Jo, Han-Hyung;Lee, Chang-Soon;Noh, Ji-Ae
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.197-208
    • /
    • 2021
  • The deer antler has been used as a major drug in oriental medicine for a long time. Recently, the demand for easy-to-take health functional foods is increasing due to economic development and changes in diet. As part of research on the development of functional materials for antlers, lactic acid fermentation of antler extract was performed. It was intended to develop a functional material with enhanced total polyphenol and flavonoid content and enhanced antioxidant activity. Lactic acid bacteria fermentation was performed by adding 4 types of lactic acid bacteria starter products, B. longum, Lb. Plantarum, Lb. acidophilus and mixture of 8 types of lactic acid bacteria to the antler water extract substrate, respectively. During the fermentation of lactic acid bacteria, the number of proliferation, total polyphenol and total flavonoid content, DPPH radical scavenging and antioxidant activity were quantified and evaluated. As a result of adding these four types of lactic acid bacteria to the antler water extract substrate, the number of lactic acid bacteria measured was 2.04~5.00×107. Meanwhile, a protease (Baciullus amyloliquefaciens culture: Maxazyme NNP DS) was added to the antler extract to decompose the peptide bonds of the contained proteins. Then, these four types of lactic acid bacteria were added and the number of lactic acid bacteria increased to 2.84×107 ~ 2.21×108 as the result of culture. The total polyphenol contents were 4.82~6.26 ㎍/mL in the lactic acid bacteria fermentation extracts, and after the reaction of protease enzyme and lactic fermentation, increased to 14.27~20.58 ㎍/mL. The total flavonoid contents were 1.52~2.21 ㎍/ml in the lactic acid bacteria fermentation extracts, and after the protease reaction and fermentation, increased to 5.59 ~ 8.11 mg/mL. DPPH radical scavenging activities of lactic acid bacteria fermentation extracts was 17.03~22.75%, but after the protease reaction and fermentation, remarkably increased to 32.82~42.90%.