• Title/Summary/Keyword: Anti-apoptotic/pro-apoptotic proteins

Search Result 105, Processing Time 0.03 seconds

Bee venom inhibits the proliferation and migration of cervical-cancer cells in an HPV E6/E7-dependent manner

  • Kim, Da-Hyun;Lee, Hyun-Woo;Park, Hyun-Woo;Lee, Han-Woong;Chun, Kyung-Hee
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.419-424
    • /
    • 2020
  • Bee venom (BV), secreted from the venom gland of the honey bee, contains several biological active compounds. BV has been widely used as a traditional medicine for treating human disease, including cancer. In this study, we have shown the molecular mechanism underlying the therapeutic effect of BV on cancer. Treatment with BV reduced the proliferation of cervical-cancer cells in a dose- and time-dependent manner. Interestingly, the killing effect of BV was specific to HPV-positive cervical-cancer cell lines, such as Caski and HeLa cells, and not to HPV-negative cervical-cancer cells (C33A). BV reduced the expression of HPV E6 and E7 at RNA and protein levels, leading to an increase in the expression of p53 and Rb in Caski and HeLa cells. Further, BV decreased the levels of cell-cycle proteins, such as cyclin A and B, and increased the levels of cell-cycle inhibitors, such as p21 and p27. BV significantly induced apoptosis and inhibited wound healing and migration of cervical-cancer cells. It also upregulated the expression of pro-apoptotic BAX and downregulated the expression of anti-apoptotic Bcl-2 and Bcl-XL. Cleavage of caspase-3, caspase-9, and PARP were also induced by BV treatment, whereas the phosphorylation of mitogenic signaling-related proteins, such as AKT, JNK, p38, and ERK, were downregulated. Our results indicate that BV has a therapeutic selectivity for HPV-positive malignant cells, so further clinical studies are needed to assess its clinical application.

D-Pinitol Promotes Apoptosis in MCF-7 Cells via Induction of p53 and Bax and Inhibition of Bcl-2 and NF-κB

  • Rengarajan, Thamaraiselvan;Nandakumar, Natarajan;Rajendran, Peramaiyan;Haribabu, Lingaiah;Nishigaki, Ikuo;Balasubramanian, Maruthaiveeran Periyasamy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1757-1762
    • /
    • 2014
  • Development of drugs from natural products has been undergoing a gradual evoluation. Many plant derived compounds have excellent therapeutic potential against various human ailments. They are important sources especially for anticancer agents. A number of promising new agents are in clinical development based on their selective molecular targets in the field of oncology. D-pinitol is a naturally occurring compound derived from soy which has significant pharmacological activitites. Therefore we selected D-pinitol in order to evaluate apoptotic potential in the MCF-7 cell line. Human breast cancer cells were treated with different concentrations of D-pinitol and cytotoxicity was measured by MTT and LDH assays. The mechanism of apoptosis was studied with reference to expression of p53, Bcl-2, Bax and NF-kB proteins. The results revealed that D-pinitol significantly inhibited the proliferation of MCF-7 cells in a concentration-dependent manner, while upregulating the expression of p53, Bax and down regulating Bcl-2 and NF-kB. Thus the results obtained in this study clearly vindicated that D-pinitol induces apotosis in MCF-7 cells through regulation of proteins of pro- and anti-apoptotic cascades.

Apoptosis Induction by Methanol Extract of Prunus mume Fruits in Human Leukemia U937 Cells (인체 백혈병세포에서 매실 추출물에 의한 apoptosis 유도)

  • Chung, You-Jeong;Park, Cheol;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1109-1119
    • /
    • 2011
  • In the present study, the pro-apoptotic effects of methanol extract of Prunus mume fruits (MEPM) in human leukemia U937 cells were investigated. It was found that exposure to MEPM resulted in growth inhibition in a concentration-dependent manner by inducing apoptosis. The induction of apoptotic cell death in U937 cells by MEPM was correlated with a down-regulation of inhibitor of apoptosis protein (IAP) family, such as X-linked inhibitor of apoptosis protein (XIAP) and survivin, anti-apoptotic Bcl-2, up-regulation of FasL and cleavage of Bid. MEPM treatment also induced the proteolytic activation of caspase-3, caspase-8 and caspase-9, and degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase (PARP) and ${\beta}$-catenin. In addition, apoptotic cell death induced by MEPM was significantly inhibited by z-DEVD-fmk, a caspase-3 specific inhibitor, which demonstrates the important role of caspase-3 in the apoptotic process by MEPM in U937 cells. Taken together, these findings suggest that P. mume extracts may be a potential chemotherapeutic agent for the control of human leukemia cells and further studies will be needed to identify the active compounds.

Effect of Bcl-2 Inhibitor Treatment on Embryo Developmental Competence, Apoptosis and ER-stress in Pigs (Bcl-2의 저해제 처리에 따른 돼지 수정란의 배발달 능력, 세포 사멸 및 소포체 스트레스 양상)

  • Hong, Joo-Hee;Min, Sung-Hun;Lee, Enok;Son, Hyeong-Hoon;Yeon, Ji-Yeong;Park, Humdai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.167-172
    • /
    • 2012
  • The key regulators of apoptosis are the interacting protein of the Bcl-2 family. Bcl-2, an important member of this family, blocks cytochrome C release by sequestering pro-apoptotic BH3-only proteins such as Bid, Bad, Bax and Bim. The pro-survival family members (Bcl-2, Bcl-XL, Bcl-W) are critical for cell survival, since loss of any of them causes cell death in certain cell type. However, its role during early porcine embryonic development is not sufficient. In this study, we traced the effects of Bcl-2 inhibitor, ABT-737, on early porcine embryonic development. We also investigated several indicators of developmental potential, including gene expression (apoptosis-related genes) and apoptosis, which are affected by ABT-737. Porcine embryos were cultured in the PZM-3 medium with or without ABT-737 for 6 days. In result, significant differences in developmental potential were detected between the embryos that were cultured with or without ABT-737 ($14.7{\pm}3.0$ vs $30.3{\pm}4.8%$, p<0.05). TUNEL assay showed that the number of containing fragmented DNA at the blastocyst stage increased in the ABT-737 treated group compared with control (4.7 vs 3.7, p<0.05). The mRNA expression of the pro-apoptotic gene Bax increased in ABT-737 treated group (p<0.05), whereas expressions of the anti-apoptotic Bcl-2 family members (Bcl-2, Bcl-XL, Bcl-W) decreased (p<0.05). Also, expressions of the ER stress indicator genes (GRP78, XBP-1 and sXBP-1) increased in ABT-737 treated group (p<0.05). In conclusion, Bcl-2 is closely associated with of apoptosis- and ER stress-related genes expressions and developmental potential in pig embryos.

The Cytotoxicity of Kahweol in HT-29 Human Colorectal Cancer Cells Is Mediated by Apoptosis and Suppression of Heat Shock Protein 70 Expression

  • Choi, Dong Wook;Lim, Man Sup;Lee, Jae Won;Chun, Wanjoo;Lee, Sang Hyuk;Nam, Yang Hoon;Park, Jin Myung;Choi, Dae Hee;Kang, Chang Don;Lee, Sung Joon;Park, Sung Chul
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.128-133
    • /
    • 2015
  • Although coffee is known to have antioxidant, anti-inflammatory, and antitumor properties, there have been few reports about the effect and mechanism of coffee compounds in colorectal cancer. Heat shock proteins (HSPs) are molecular chaperones that prevent cell death. Their expression is significantly elevated in many tumors and is accompanied by increased cell proliferation, metastasis and poor response to chemotherapy. In this study, we investigated the cytotoxicity of four bioactive compounds in coffee, namely, caffeine, caffeic acid, chlorogenic acid, and kahweol, in HT-29 human colon adenocarcinoma cells. Only kahweol showed significant cytotoxicity. Specifically, kahweol increased the expression of caspase-3, a pro-apoptotic factor, and decreased the expression of anti-apoptotic factors, such as Bcl-2 and phosphorylated Akt. In addition, kahweol significantly attenuated the expression of HSP70. Inhibition of HSP70 activity with triptolide increased kahweol-induced cytotoxicity. In contrast, overexpression of HSP70 significantly reduced kahweol-induced cell death. Taken together, these results demonstrate that kahweol inhibits colorectal tumor cell growth by promoting apoptosis and suppressing HSP70 expression.

Anti-proliferative Properties of p-Coumaric Acid in SNU-16 Gastric Cancer Cells (SNU-16 위암 세포주에서 p-coumaric acid의 세포성장 억제 효과)

  • Jang, Mi Gyeong;Ko, Hee Chul;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.809-816
    • /
    • 2019
  • The ubiquitous plant metabolite p-coumaric acid (p-CA) has antioxidant and anti-inflammatory properties, but its anti-cancer activity has not been established in gastric cancer cell lines. In this study, we investigated the effects of p-CA on the proliferation and transcriptome profile of SNU16 gastric cancer cells. Treatment with p-CA induced apoptosis of the SNU-16 cells by regulating the expression of pro-apoptotic and anti-apoptotic proteins, such as Bcl-2, poly (ADP-ribose) polymerase (PARP), Bax, procaspase-3, and cleaved-caspase-3. The genes differentially expressed in response to p-CA treatment of the SNU-16 cells were identified by RNA sequencing analysis. Genes regulated by p-CA were involved mainly in the inflammatory response, apoptotic processes, cell cycle, and immune response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the phosphatidylinositol-3-kinase-Akt and cancer signaling pathways were altered by p-CA. Protein-protein interaction (PPI) network analysis also revealed that p-CA treatment was correlated with differential expression of genes associated with the inflammatory response and cancer. Collectively, these results suggest that p-CA has potential utility in gastric cancer prevention.

Expression of Human SOD1 and Mutant SOD1 (G93A) in E. coli and Identification of SOD1 as a Substrate of HtrA2 Serine Protease (대장균에서의 human SOD1과 mutant SOD1 (G93A) 단백질의 발현과 HtrA2의 기질 여부 확인에 관한 연구)

  • Kim, Goo-Young;Kim, Sang-Soo;Park, Hyo-Jin;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.716-722
    • /
    • 2006
  • Superoxide dismutase (SOD) is physiologically important in regulating cellular homeostasis and apoptotic cell death, and its mutations are the cause of familial amyotrophic lateral sclerosis (FALS). Mitochondrial serine protease HtrA2 has a pro-apoptotic function and has known to be associated with neurodegenerative disorders. To investigate the relationship between genes associated with apoptotic cell death, such as HtrA2 and SOD1, we utilized the pGEX expression system to develop a simple and rapid method for purifying wild-type and ALS-associated mutant SOD1 proteins in a suitable form for biochemical studies. We purified SOD1 and SOD1 (G93A) proteins to approximately 90% purity with relatively high yields (3 mg per liter of culture). Consistent with the result in mammalian cells, SOD1 (G93A) was more insoluble than wild-type SOD1 in E. coli, indicating that research on the aggregate formation of SOD1 may be possible using this pGEX expression system in E. coli. We investigated the HtrA2 serine protease activity on SOD1 to assess the relationship between two proteins. Not only wild-type SOD1 but also ALS-associated mutant SOD1 (G93A) were cleaved by HtrA2, resulting in the production of the 19 kDa and 21 kDa fragments that were specific for anti-SOD1 antibody. Using protein gel electrophoresis and immunoblot assay, we compared the relative molecular masses of thrombin-cleaved GST-SOD1 and HtrA2-cleaved SOD1 fragments and can predict that the HtrA2-cleavage sites within SOD1 are the peptide bonds between leucine 9-lysine 10 (L9-K10) and glutamine 23-lysine 24 (Q23-K24). Our study indicates that SOD1 is one of the substrate for HtrA2, suggesting that both HtrA2 and SOD1 may be important for modulating the HtrA2-SOD1-mediated apopotic cell death that is associated with the pathogenesis of neurodegenerative disorder.

PLGA-Loaded Gold-Nanoparticles Precipitated with Quercetin Downregulate HDAC-Akt Activities Controlling Proliferation and Activate p53-ROS Crosstalk to Induce Apoptosis in Hepatocarcinoma Cells

  • Bishayee, Kausik;Khuda-Bukhsh, Anisur Rahman;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.518-527
    • /
    • 2015
  • Controlled release of medications remains the most convenient way to deliver drugs. In this study, we precipitated gold nanoparticles with quercetin. We loaded gold-quercetin into poly(DL-lactide-co-glycolide) nanoparticles (NQ) and tested the biological activity of NQ on HepG2 hepatocarcinoma cells to acquire the sustained release property. We determined by circular dichroism spectroscopy that NQ effectively caused conformational changes in DNA and modulated different proteins related to epigenetic modifications and c ell cycle control. The mitochondrial membrane potential (MMP), reactive oxygen species (ROS), cell cycle, apoptosis, DNA damage, and caspase 3 activity were analyzed by flow cytometry, and the expression profiles of different anti- and pro-apoptotic as well as epigenetic signals were studied by immunoblotting. A cytotoxicity assay indicated that NQ preferentially killed cancer cells, compared to normal cells. NQ interacted with HepG2 cell DNA and reduced histone deacetylases to control cell proliferation and arrest the cell cycle at the sub-G stage. Activities of cell cycle-related proteins, such as $p21^{WAF}$, cdk1, and pAkt, were modulated. NQ induced apoptosis in HepG2 cells by activating p53-ROS crosstalk and induces epigenetic modifications leading to inhibited proliferation and cell cycle arrest.

Effect of Proapoptotic Bcl-2 on Naringenin-induced Apoptosis in Human Leukemia U937 Cells (Naringenin에 의한 인체혈구암세포의 apoptosis 유발에 미치는 pro-apoptotic Bcl-2의 영향)

  • Park, Cheol;Jin, Cheng-Yun;Choi, Tae Hyun;Hong, Su Hyun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1118-1125
    • /
    • 2013
  • Naringenin, a naturally occurring citrus flavonone, is a potentially valuable candidate for cancer chemotherapy. However, the cellular and molecular mechanisms responsible for its anticancer activity are largely unknown. In the present study, we attempted to elucidate the mechanisms responsible for naringenin-induced apoptosis in human leukemic U937 cells. We found that naringenin markedly inhibited the growth of U937 cells by decreasing cell proliferation and inducing apoptosis, which was associated with the activation of caspases. A pan-caspase inhibitor, z-VAD-fmk, significantly inhibited naringenin-induced U937 cell apoptosis, indicating that caspases are key regulators of apoptosis in response to naringenin in U937 cells. Although the levels of antiapoptotic Bcl-2 and proapoptotic Bax proteins remained unchanged in naringenin-treated U937 cells, Bcl-2 overexpression attenuated naringenin-induced apoptosis. Furthermore, combined treatment with naringenin and HA14-1, a small-molecule Bcl-2 inhibitor, effectively increased the apoptosis through enhancement of XIAP down-regulation, Bid cleavage, and caspase activation, suggesting that the synergistic effect was at least partially mediated through the death receptor-mediated apoptosis pathway.

Effects of Glutamine Deprivation and Serum Starvation on the Growth of Human Umbilical Vein Endothelial Cells (재대정맥 내피세포의 증식에 미치는 글루타민 및 혈청 결핍의 영향)

  • Jeong, Jin-Woo;Lee, Hye Hyeon;Park, Cheol;Kim, Wun-Jae;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.926-932
    • /
    • 2013
  • Glutamine and serum are essential for cell survival and proliferation in vitro, yet the signaling pathways that sense glutamine and serum levels in endothelial cells remain uninvestigated. In this study, we examined the effects of glutamine deprivation and serum starvation on the fate of endothelial cells using a human umbilical vein endothelial cell (HUVEC) model. Our data indicated that glutamine deprivation and serum starvation trigger a progressive reduction in cell viability through apoptosis induction in HUVECs as determined by DAPI staining and flow cytometry analysis. Although the apoptotic effects were more predominant in the glutamine deprivation condition, both apoptotic actions were associated with an increase in the Bax/Bcl-2 (or Bcl-xL) ratio, down-regulation of the inhibitor of apoptosis protein (IAP) family proteins, activation of caspase activities, and concomitant degradation of poly (ADP-ribose) polymerases. Moreover, down-regulation of the expression of Bid or up-regulation of truncated Bid (tBid) were observed in cells grown under the same conditions, indicating that glutamine deprivation and serum starvation induce the apoptosis of HUVECs through a signaling cascade involving death-receptor-mediated extrinsic pathways, as well as mitochondria-mediated intrinsic caspase pathways. However, apoptosis was not induced in cells grown in glutamine- and serum-free media when compared with cells exposed to glutamine deprivation or serum starvation alone. Taken together, our data indicate that glutamine deprivation and serum starvation suppress cell viability without apoptosis induction in HUVECs.