• 제목/요약/키워드: Anti-apoptosis

검색결과 1,641건 처리시간 0.031초

암세포 특이적 세포 사멸을 유도하는 자생식물 추출물의 항암 효과 (Anti-cancer Activity of Korean Local Plant Extracts Inducing Apoptosis in Various Carcinoma Cells)

  • 윤이관;이승은;이동진;노문철;성정숙;박충범;장영주
    • 생약학회지
    • /
    • 제40권1호
    • /
    • pp.6-12
    • /
    • 2009
  • Thirty five methanol extracts from 19 natural local plants, which have been used as traditional anti-cancer medicine, were prepared. They were analyzed the cytotoxic effects on primary fibroblast cells and carcinoma cells. The root extract of Solanum nigrum were highly toxic in both cell lines with $IC_{50}$ values of less than $0.01{\mu}g/{\mu}l$, and 26 of 35 extracts were toxic in all cells with $IC_{50}$ values of $0.1{\sim}2{\mu}g/{\mu}l$. Three extracts including the fruit extracts of Solanum nigrum and Morus alba had no cytotoxic activity in both cell lines. Five of 35 extracts were highly toxic in cancer cells than in primary cells. Because primary cells were more resistant on these extracts, the five extracts were selected for anti-cancer agent candidates. Apoptosis or programmed cell death has an essential role in chemotherapy-induced tumor cell killing. Recently, inducers of apoptosis have been used in cancer therapy. When two of 5 cancer cell-specific cytotoxic extracts (Ulmus parvifolia and Zelkova serrata) were treated in concentration of $0.02{\sim}0.1{\mu}g/{\mu}l$, apoptosis were increased at 3-5 times in cancer cell lines. Finally, the apoptotic effects of these extracts were confirmed by cleavages of both poly-(ADP-ribose)-polymerase and caspase-3 as apoptotic markers. In this report, we suggested that two of 35 medicinal herb extracts can be useful anti-cancer drug candidates inducing apoptosis in several carcinoma cell lines.

Treatment with Phytoestrogens Reversed Triclosan and Bisphenol A-Induced Anti-Apoptosis in Breast Cancer Cells

  • Lee, Geum-A;Choi, Kyung-Chul;Hwang, Kyung-A
    • Biomolecules & Therapeutics
    • /
    • 제26권5호
    • /
    • pp.503-511
    • /
    • 2018
  • Triclosan (TCS) and bisphenol A (BPA) are endocrine-disrupting chemicals that interfere with the hormone or endocrine system and may cause cancer. Kaempferol (Kaem) and 3,3'-diindolylmethane (DIM) are phytoestrogens that play chemopreventive roles in the inhibition of carcinogenesis and cancer progression. In this study, the influence of TCS, BPA, Kaem, and DIM on proliferation and apoptotic abilities of VM7Luc4E2 breast cancer cells were examined. MTT assay revealed that TCS ($0.1-10{\mu}M$), BPA ($0.1-10{\mu}M$) and E2 ($0.01-0.0001{\mu}M$) induced significant cell proliferation of VM7Luc4E2 cells, which was restored to the control (0.1% DMSO) by co-treatment with Kaem ($30{\mu}M$) or DIM ($15{\mu}M$). Reactive oxygen species (ROS) production assays showed that TCS and BPA inhibited ROS production of VM7Luc4E2 cells similar to E2, but that co-treatment with Kaem or DIM on VM7Luc4E2 cells induced increased ROS production. Based on these results, the effects of TCS, BPA, Kaem, and DIM on protein expression of apoptosis and ROS production-related markers such as Bax and Bcl-xl, as well as endoplasmic reticulum (ER) stress-related markers such as $eIF2{\alpha}$ and CHOP were investigated by Western blot assay. The results revealed that TCS, and BPA induced anti-apoptosis by reducing ROS production and ER stress. However, Kaem and DIM effectively inhibited TCS and BPA-induced anti-apoptotic processes in VM7Luc4E2 cells. Overall, TCS and BPA were revealed to be distinct xenoestrogens that enhanced proliferation and anti-apoptosis, while Kaem and DIM were identified as natural chemopreventive compounds that effectively inhibited breast cancer cell proliferation and increased anti-apoptosis induced by TCS and BPA.

Endlicheria anomala 메탄올 추출물에 의한 인체 폐암세포주와 간암세포주의 자가사멸 유도 (Induction of Apoptosis by Methanol Extract of Endlicheria anomala in Human Lung and Liver Cancer Cells)

  • 박현진;진수정;오유나;김병우;권현주
    • 생명과학회지
    • /
    • 제25권4호
    • /
    • pp.441-449
    • /
    • 2015
  • 본 연구에서는 인체 폐암세포주인 A549 세포와 간암세포주인 HepG2 세포를 사용하여 Endlicheria anomala 메탄올 추출물(Methanol extract of E. anomala, MEEA)의 항암 활성 및 그 분자적 기전에 관하여 분석하였다. 먼저 MEEA가 인체 폐암세포와 간암세포의 증식에 미치는 영향을 분석한 결과, 암세포의 증식을 억제하는 효과가 탁월하였다. 그 후 MEEA에 의한 세포 증식이 억제되는 원인을 분석하기 위하여 Flow cytometry analysis, AnnexinV & 7-AAD 이중 염색을 수행한 결과, 두 세포에서 모두 농도의존적으로 apoptosis 유발군인 SubG1기의 세포 분포가 증가하였고, early apoptosis에서 late apoptosis로 전환되는 공통적인 현상을 확인할 수 있었다. 또한 apoptosis의 유발로 일어날 수 있는 세포의 형태 변화를 관찰하기 위한 DAPI 염색과 DNA fragmentation을 통하여 MEEA 처리에 의한 A549의 염색질 응축, 사멸체 형성 및 DNA의 끌림 현상을 관찰할 수 있었으며, 이와 관련된 분자적 기전 분석을 위한 Western blot을 추가로 수행하여 caspase, PARP, pro-, anti-apoptotic 단백질의 발현을 관찰하였다. 이상의 결과로 MEEA는 인체 폐암세포와 간암세포에서 p53의 발현 증가와 Bcl-2 family의 변화를 유도하며, caspase-3와 관련된 경로를 통하여 농도의존적으로 apoptosis를 유발시킨다는 것을 증명하였다. 이는 MEEA가 항암 활성을 보유하고 있고, 인체 폐암세포와 간암세포 사멸의 기전 연구를 위한 중요한 자료가 될 수 있음을 시사한다.

Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROS-dependent inactivation of the PI3K/Akt signaling pathway

  • Park, Cheol;Choi, Eun Ok;Hwangbo, Hyun;Lee, Hyesook;Jeong, Jin-Woo;Han, Min Ho;Moon, Sung-Kwon;Yun, Seok Joong;Kim, Wun-Jae;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • 제16권3호
    • /
    • pp.330-343
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Zanthoxylum schinifolium is traditionally used as a spice for cooking in East Asian countries. This study was undertaken to evaluate the anti-proliferative potential of ethanol extracts of Z. schinifolium leaves (EEZS) against human bladder cancer T24 cells. MATERIALS/METHODS: Subsequent to measuring the cytotoxicity of EEZS, the anti-cancer activity was measured by assessing apoptosis induction, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP). In addition, we determined the underlying mechanism of EEZS-induced apoptosis through various assays, including Western blot analysis. RESULTS: EEZS treatment concentration-dependently inhibited T24 cell survival, which is associated with apoptosis induction. Exposure to EEZS induced the expression of Fas and Fas-ligand, activated caspases, and subsequently resulted to cleavage of poly (ADP-ribose) polymerase. EEZS also enhanced the expression of cytochrome c in the cytoplasm by suppressing MMP, following increase in the ratio of Bax:Bcl-2 expression and truncation of Bid. However, EEZS-mediated growth inhibition and apoptosis were significantly diminished by a pan-caspase inhibitor. Moreover, EEZS inhibited activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway, and the apoptosis-inducing potential of EEZS was promoted in the presence of PI3K/Akt inhibitor. In addition, EEZS enhanced the production of ROS, whereas N-acetyl cysteine (NAC), a ROS scavenger, markedly suppressed growth inhibition and inactivation of the PI3K/Akt signaling pathway induced by EEZS. Furthermore, NAC significantly attenuated the EEZS-induced apoptosis and reduction of cell viability. CONCLUSIONS: Taken together, our results indicate that exposure to EEZS exhibits anti-cancer activity in T24 bladder cancer cells through ROS-dependent induction of apoptosis and inactivation of the PI3K/Akt signaling pathway.

Luteolin Promotes Apoptosis of Endometriotic Cells and Inhibits the Alternative Activation of Endometriosis-Associated Macrophages

  • Woo, Jeong-Hwa;Jang, Dae Sik;Choi, Jung-Hye
    • Biomolecules & Therapeutics
    • /
    • 제29권6호
    • /
    • pp.678-684
    • /
    • 2021
  • Luteolin, a flavonoid present in several fruits, vegetables, nuts, and herbs reportedly exhibits anti-cancer and anti-inflammatory properties. However, the effect of luteolin on endometriosis, a painful condition characterized by the ectopic growth of endometrial tissue and pelvic inflammation, remains elusive. Herein, we observed that luteolin inhibited cell growth and induced apoptosis of 12Z human endometriotic cells by activating caspase-3, -8, and -9. Additionally, luteolin significantly inhibited the expression of key chemokines, C-C motif chemokine ligand 2 (CCL2) and CCL5, required for monocyte/macrophage influx at endometriotic sites. In macrophages stimulated by endometriotic cells, luteolin treatment suppressed the intracellular expression of M2 markers and endometriosis-promoting factors. Collectively, our data suggest that luteolin exerts anti-endometriotic effects by stimulating endometriotic cell apoptosis and hindering the alternative activation of macrophages.

Eriodictyol induces apoptosis via regulating phosphorylation of JNK, ERK, and FAK/AKT in pancreatic cancer cells

  • Oh, Ui Hyeon;Kim, Da-Hye;Lee, Jungwhoi;Han, Song-I;Kim, Jae-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • 제65권2호
    • /
    • pp.83-88
    • /
    • 2022
  • Although it has been intensively studied over the past few decades, pancreatic cancer remains one of the most lethal cancers. Eriodictyol, a plant-derived flavonoid mainly found in citrus fruits, exerts diverse biological effects, including anti-oxidant, anti-cancer, and anti-inflammatory properties. In this study, we investigated the anticancer properties of eriodictyol and its mechanisms of action in pancreatic cancer cells. In both SNU213 and Panc-1 cells, eriodictyol decreased viability, induced apoptosis, and decreased clonogenicity. In addition, eriodictyol treatment increased the phosphorylation level of JNK and decreased the phosphorylation levels of ERK, FAK, and AKT. These observations provide insight into the molecular mechanisms of eriodictyol-induced apoptosis in pancreatic cancer cell lines, and could contribute to the development of candidate compounds for treating pancreatic cancer.

인체 혈구암세포 U937에서 해양해면동물에서 추출된 Pectenotoxin-2에 의한 Apoptosis의 유발에 관한 연구 (Induction of Apoptosis by Pectenotoxin-2 Isolated from Marine Sponges in U937 Human Leukemic Cells)

  • 신동역;강호성;배송자;정지형;최영현
    • 한국해양바이오학회지
    • /
    • 제1권2호
    • /
    • pp.63-70
    • /
    • 2006
  • 본 연구에서는 U937 인체 백혈병 세포의 증식에 미치는 PTX-2의 영향을 조사한 결과, PTX-2의 처리에 따라 U937 세포는 처리 농도 및 처리 시간 의존적으로 심한 형태적 변형과 함께 증식이 억제되었다. 이러한 PTX-2 처리에 의한 U937 세포의 증식억제는 apoptosis 유발과 관련이 있었으며, 이를 DAPI staining에 의한 apoptotic body 형성, flow cytometry를 이용한 sub-G1 세포 빈도의 정량적 분석을 통하여 확인하였다. 이러한 PTX-2 처리에 의한 U937 세포의 apoptosis 유발은 Bcl-2 family에 속하는 anti-apoptotic 인자인 Bcl-$X_L$의 발현 감소 및 IAPs family에 속하는 유전자들의 선택적 발현 감소와 연관성이 있음을 알 수 있었다. 이상의 결과들은 인체 암세포에서 PTX-2의 항암작용을 이해하는데 중요한 자료가 될 것이고 나아가 PTX-2을 포함한 그와 유사한 항암제 후보물질들의 연구에 있어서 기초 자료로서 사용될 수 있을 것으로 생각된다.

  • PDF

Nuclear Factor-κB Activation: A Question of Life or Death

  • Shishodia, Shishir;Aggarwal, Bharat B.
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.28-40
    • /
    • 2002
  • Apoptosis is a mode of cell death that plays an important role in both pathological and physiological processes. Research during the last decade has delineated the entire machinery needed for cell death, and its constituents were found to pre-exist in cells. The apoptotic cascade is triggered when cells are exposed to an apoptotic stimulus. It has been known for several years that inhibitors of protein synthesis can potentiate apoptosis that is induced by cytokines and other inducers. Until 1996, it was not understood why protein synthesis inhibitors potentiate apoptosis. Then three reports appeared that suggested the role of the transcription factor NF-${\kappa}B$ activation in protecting the cells from TNF-induced apoptosis. Since then several proteins have been identified that are regulated by NF-${\kappa}B$ and are involved in cell survival, proliferation, and protection from apoptosis. It now seems that when a cell is attacked by an apoptotic stimulus, the cell responds first by activating anti-apoptotic mechanisms, which mayor may not be followed by apoptosis. Whether or not a cell undergoes proliferation, the survival, or apoptosis, appears to involve a balance between the two mechanisms. Inhibitors of protein synthesis seem to suppress the appearance of protein that are involved in anti-apoptosis. The present review discusses how NF-${\kappa}B$ controls apoptosis.

몰약(沒藥)이 자궁경부암세포(子宮經部癌細胞)(HeLa Cell)의 Apoptosis에 미치는 영향(影響) (Myrrha-induced Apoptosis in Human Cervical Carcinoma HeLa Cells)

  • 박종규;조옥현;김송백;조한백
    • 대한한방부인과학회지
    • /
    • 제19권1호
    • /
    • pp.97-110
    • /
    • 2006
  • Purpose : To address the ability of Myrrha (MY) to induce cell death, we investigated the effect of MY on apoptosis. In human cervical carcinoma HeLa cells, apoptosis occurred following MY exposure in a dose-dependent manner. Methods : We have tested several kinds of anti-oxidants to investigate the MY-induced apoptotic mechanism. Among the anti-oxidants, N-acetyl cysteine(NAC) or reduced glutathione (GSH) protects MY-induced apoptosis. NAC is an aminothiol and synthetic precursor of intracellular cysteine and GSH. To confirm the role of GSH in MY-induced apoptosis, methionine and cystathionine-glutathione extrusion inhibitors were treated in the presence of MY. Results : NAC, GSH, methionine or cystathionine led to protective effect against MY-induced apoptosis in HeLa cells. The GSH and GSH-associated reagents regulate MY-induced cytochrome c release and the resultant caspase-3 activation. Furthermore, the two specific inhibitors of carrier-mediated GSH extrusion, methionine and cystathionine demonstrate GSH extrusion occurs via a specific mechanism. While decreasing GSH extrusion and protecting against MY-induced apoptosis, methionine and cystathionine failed to exert anti-apoptotic activity in cells previously deprived of GSH. Conclusion : the target of the protection is indeed GSH extrusion. This shows that the protective effect is achieved by forcing GSH to stay within the cells during apoptogenic treatment. All this evidence indicates the extrusion of GSH precedes andis responsible for the apoptosis, probably by altering the intracellular redox state, thus giving a rationale for the development of redox-dependent apoptosis in MY-treated human cervical carcinoma HeLa cells.

  • PDF

Nitric Oxide as a Pro-apoptotic as well as Anti-apoptotic Modulator

  • Choi, Byung-Min;Pae, Hyun-Ock;Jang, Seon-Il;Kim, Young-Myeong;Chung, Hun-Taeg
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.116-126
    • /
    • 2002
  • Nitric oxide (NO), synthesized from L-arginine by NO synthases, is a small, lipophilic, diffusible, highly reactive molecule with dichotomous regulatory roles in many biological events under physiological and pathological conditions. NO can promote apoptosis (pro-apoptosis) in some cells, whereas it inhibits apoptosis (anti-apoptosis) in other cells. This complexity is a consequence of the rate of NO production and the interaction with biological molecules such as metal ion, thiol, protein tyrosine, and reactive oxygen species. Long-lasting overproduction of NO acts as a pro-apoptotic modulator, activating caspase family proteases through the release of mitochondrial cytochrome c into cytosol, up-regulation of the p53 expression, and alterations in the expression of apoptosis-associated proteins, including the Bcl-2 family. However, low or physiological concentrations of NO prevent cells from apoptosis that is induced by the trophic factor withdrawal, Fas, $TNF{\alpha}$/ActD, and LPS. The anti-apoptotic mechanism is understood on the basis of gene transcription of protective proteins. These include: heat shock protein, hemeoxygenase, or cyclooxygenase-2 and direct inhibition of the apoptotic executive effectors caspase family protease by S-nitrosylation of the cysteine thiol group in their catalytic site in a cell specific way. Our current understanding of the mechanisms by which NO exerts both pro- and anti-apototic action is discussed in this review article.