• Title/Summary/Keyword: Anti-Stress

Search Result 1,444, Processing Time 0.028 seconds

Production of green tea jelly using theanine and its physiochemical characterization (녹차 theanine을 이용한 젤리 제조 및 품질특성 조사)

  • Kim, Seong Gyung;Jeong, Hana;Im, Ae Eun;Yang, Kwang-Yeol;Choi, Yong Soo;Nam, Seung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.553-560
    • /
    • 2021
  • Theanine, the major amino acid and a sweet umami component of green tea, has anti-stress effects in humans. From green tea, theanine was extracted at 80℃ for 2 h using a low temperature, high pressure extractor, and caffeine was removed using an HP-20 column with 80% ethanol. Theanine extracts were applied to produce functional jelly using three kinds of gelling agents (I, II, and III) or various concentrations of theanine extracts (10-50%). Theanine jelly was characterized with respect to its physical properties, product stability, and physiological function. Gelling agent III (tamarind gum, xanthan gum, and locust bean gum=2:3:5, w/w/w) and S3 (35% theanine extracts) jelly exhibited the optimum textural properties with lower hardness and high springiness. Among theanine jellies, S3 exhibited optimum product stability, high 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging, and acetylcholinesterase inhibitory activity. These results indicate that the anine extracts could be used as a neuroprotective source in the food industry.

Analysis of Globalization After COVID-19 Based on Network (네트워크 기반 코로나바이러스감염증-19 이후 세계화 분석)

  • Ryu, Jea Woon;Kim, Hak Yong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.62-70
    • /
    • 2021
  • 2020 was a year in which the world spent in disorder due to the pandemic of Coronavirus infection-19(COVID-19). The pandemic was at the beginning of a turning point in history. For examples, the Black Death(Pest) that destroyed the feudal system of medieval Europe in the 14th century, smallpox that led to the destruction of the Inca Empire by Spain in the 17th century, and the Spanish flu that ended World War I early. The great transformation that will come after COVID-19 is presented from various fields and perspectives, but the understanding and direction of the transformation is ambiguous. This study attempts to derive and to analyze core terms based on a network of the future of globalization after COVID-19. Four Networks related to globalization, anti-globalization, and globalization and digitalization after COVID-19 were established respectively. A network integrating four networks was also constructed. The core terms were extracted from the hub nodes, the stress centrality, and the simplified network to which the K-core algorithm was applied. After COVID-19, the changes in globalization were analyzed from the extracted core terms. This study is thought to be meaningful to propose a method of deriving and analyzing core terms based on a network in understanding social changes after COVID-19.

Coix lacryma-jobi var. mayuen Stapf Sprout Extract Ameliorates High-Fat Diet-Induced Obesity by Upregulating LKB1/AMPK Signaling (LKB1/AMPK 신호 전달 경로의 활성화로 인한 새싹율무 열수 추출물의 항비만 효과)

  • Kim, Min Ju;Lee, Jeong Hoon;Choi, Jeong Won;Park, Hae-Jin;Shin, Mi-Rae;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.36 no.6
    • /
    • pp.39-46
    • /
    • 2021
  • Objectives : AMP-activated protein kinase (AMPK) is a key metabolic regulator that reduces lipogenesis. AMPK is mainly activated via phosphorylation of liver kinase B (LKB) 1 under energy stress. Here, we highlighted the anti-obesity effect and underlying mechanism of Coix lacryma-jobi var. mayuen Stapf sprout water extract (CSW) sprout extract in connection with the LKB1/AMPK signaling pathway. Methods : C57BL/6 mice (20~25 g) fed HFD to induce obesity and at the same time administered CSW 100 mg/kg (CSWL; (CSWL; CSW low concentration) or CSW 200 mg/kg (CSWH; CSW high concentration) or Garcinia extract (Garcinia) 200 mg/kg orally for 6 weeks. Body weight and food intake were measured at the same time each day. After 6 weeks of CSW administration, liver tissue and serum were obtained through an autopsy. After the end of the experiment, biochemical analysis (triglycerides (TG), total cholesterol (TC), HDL-cholesterol, and LDL-cholesterol) was performed on the serum. And then, protein levels related to TG and TC synthesis were measured through western blot analysis in liver tissue. Results : As a result, serum TG, TC, and LDL-cholesterol levels were significantly increased in the control group and significantly decreased in the CSW administration group. On the other hand, the HDL-cholesterol level was increased in the CSW-administered group. And as a result of Western blot analysis, CSW significantly increased the phosphorylation of LKB1 & AMPK, and remarkably decreased the expression of factors related to TG and TC synthesis. Conclusions : Our findings suggest that CSW influences the TG and TC synthesis to positively affect HFD-induced obesity in C57BL/6 mice.

Production of Carotenoids by Bacteria; Carotenoid Productivity and Availability (박테리아에 의한 카로티노이드 생산; 카로티노이드 생산성 및 활용 가능성)

  • Choi, Seong Seok;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.411-419
    • /
    • 2022
  • Carotenoids are red, orange, and yellow fat-soluble pigments that exist in nature, and are known as physiologically active substances with various functions, such as provitamin A, antioxidant, anti-inflammatory, and anticancer. Because of their physiological activity and color availability, carotenoids are widely used in the food, cosmetics, and aquaculture industries. Currently, most carotenoids used industrially use chemical synthesis because of their low production cost, but natural carotenoids are in the spotlight because of their safety and physiologically active effects. However, the production of carotenoids in plants and animals is limited for economic reasons. Carotenoids produced by bacteria have a good advantage in replacing carotenoids produced by chemical synthesis. Since carotenoids produced from bacteria have limited industrial applications due to low productivity, studies are continuously being conducted to increase the production of carotenoids by bacteria. Studies conducted to increase carotenoid production from bacteria include the activity of enzymes in the bacterial carotenoid biosynthesis pathway, the development of mutant strains using physical and chemical mutagens, increasing carotenoid productivity in strain construction through genetic engineering, carotenoid accumulation through stress induction, fermentation medium composition, culture conditions, co-culture with other strains, etc. The aim of this article was to review studies conducted to increase the productivity of carotenoids from bacteria.

Damage Analysis of Manganese Crossings for Turnout System of Sleeper Floating Tracks on Urban Transit (도시철도 침목플로팅궤도 분기기 망간크로싱의 손상해석)

  • Choi, Jung-Youl;Yoon, Young-Sun;Ahn, Dae-Hee;Han, Jae-Min;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.515-524
    • /
    • 2022
  • The turnout system of the sleeper floating tracks (STEDEF) on urban transit is a Anti-vibration track composed of a wooden sleeper embedded in a concrete bed and a sleeper resilience pad under the sleeper. Therefore, deterioration and changes in spring stiffness of the sleeper resilience pad could be cause changes in sleeper support conditions. The damage amount of manganese crossings that occurred during the current service period of about 21 years was investigated to be about 17% of the total amount of crossings, and it was analyzed that the damage amount increased after 15 years of use (accumulated passing tonnage of about 550 million tons). In this study, parameter analysis (wheel position, sleeper support condition, and dynamic wheel load) was performed using a three-dimensional numerical model that simulated real manganese crossing and wheel profile, to analyze the damage type and cause of manganese crossing that occurred in the actual field. As a result of this study, when the voided sleeper occurred in the sleeper around the nose, the stress generated in the crossing nose exceeded the yield strength according to the dynamic wheel load considering the design track impact factor. In addition, the analysis results were evaluated to be in good agreement with the location of damage that occurred in the actual field. Therefore, in order to minimize the damage of the manganese crossing, it is necessary to keep the sleeper support condition around the nose part constant. In addition, by considering the uniformity of the boundary conditions under the sleepers, it was analyzed that it would be advantageous to to replace the sleeper resilience pad together when replacing the damaged manganese crossing.

Neuroprotective Effect of Yukul-tang against the Oxidative Stress (육울탕(六鬱湯)의 산화적 스트레스에 대한 뇌세포 보호효과)

  • Jung, Sun-Hyung;Lee, Jin-Moo;Lee, Chang-Hoon;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.1
    • /
    • pp.15-30
    • /
    • 2009
  • Purpose: In this rapidly aging society, the research and development of traditional oriental medicine treatment is one of the critical factors to protect the increasing neuro-degenerative disorders. In this study, we wanted to verify the effect of Yukul-tang (YUT) on neuro-degenerative disease model by assessing the antioxidant and anti-inflammation effects. Methods: To assess the antioxidant effects of YUT, we carried out DPPH radical and ABTS radical scavenging assays and determined the total polyphenolic contents in YUT. To evaluate the neuro-protective effects of YUT, we performed the MTT and ROS assays and TH immunohistochemistry, NO and TNF-${\alpha}$ assays in SH-SY5Y or mesencephalic dopaminergic neurons damaged by 6-OHDA. Results: The treatment of YUT showed eliminating effects on DPPH radical and ABTS radical. it showed deterring effects on ROS, NO and TNF-${\alpha}$ and protecting effects on TH-positive cell in SH-SY5Y cells or mesencephalic dopaminergic neurons. Especially in the case of the treatment of YUT with 0.2ug/mL + 6-OHDA 10uM, the protective effect on dopaminergic neurons was most outstanding. Conclusion: In this study, we have demonstrated that YUT has an antioxidant effect and a neuro-protective effect on neuro-degenerative disease model caused by neurotoxin such as 6-OHDA. The results of our present study suggest that YUT can be useful agent to prevent and to treat neuro-degenerative diseases.

Neuroprotective effect of Coreopsis lanceolata extract against hydrogen-peroxide-induced oxidative stress in PC12 cells

  • Kyung Hye Seo;Hyung Don Kim;Jeong-Yong Park;Dong Hwi Kim;Seung-Eun Lee;Gwi Young Jang;Yun-Jeong Ji;Ji Yeon Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.175-184
    • /
    • 2022
  • The present study investigated the neuroprotective effects of Coreopsis lanceolate extract against hydrogen-peroxide (H2O2)-induced oxidative damage and cell death in pheochromocytoma 12 (PC12) cells. Reactive oxygen species (ROS), 2,2'-azinobis (3-ethylbebzothiazoloine-6-sulfonic acid) diammonium salt, and 1,1-diphenyl-2-picrrylhydrazyl radical scavenging activities, as well as the expression levels of proteins associated with oxidative damage and cell death were investigated. According to the results, C. lanceolate extract exhibited inhibitory activity against intracellular ROS generation and cell-damaging effects induced by hydroxyl radicals in a dose-dependent manner. Total phenolic and flavonoid contents were 22.3 mg·g-1 gallic acid equivalent and 16.2 mg·g-1 catechin equivalent, respectively. Additionally, a high-performance liquid chromatography (HPLC) assay based on the internal standard method used to detect phenolic compounds. The phenolic compounds identified in C. lanceolata extract contained (+)-catechin hydrate (5.0 ± 0.0 mg·g-1), ferulic acid (1.6 ± 0.0 mg·g-1), chlorogenic acid (1.5 ± 0.0 mg·g-1), caffeic acid (1.2 ± 0.0 mg·g-1), naringin (0.9 ± 0.0 mg·g-1), and p-coumaric acid (0.5 ± 0.0 mg·g-1). C. lanceolata extract attenuated pro-apoptotic Bax expression levels and enhanced the expression levels of anti-apoptotic Bcl-2, caspase-3, and caspase-9 proteins. Therefore, C. lanceolata is a potential source of materials with neuroprotective properties against neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases.

Anti-Oxidative Effects of Cymbopoton Citratus Ethanol Extract through the Induction of HO-1 Expression in RAW 264.7 Cells (RAW264.7 세포에서 Cymbopogon Citratus 에탄올 추출물의 HO-1 유도를 통한 항산화 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.73-82
    • /
    • 2023
  • Purpose : Cymbopogon citratus, also known as lemongrass, has widely spread around the world and its essential oil is usually applied in food, perfume, and other industrial purposes. In addition, C. citratus has also been used for the treatment of inflammation, digestive disorders, and diabetes in traditional medicine. In this study, the antioxidative activity of C. citratus ethanol extract (CCEE) was analyzed in RAW 264.7 cells through the induction of one of phase II enzymes, heme oxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor (Nrf)2, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt. Methods : The antioxidative activity of CCEE against oxidative stress and its underlying molecular mechanisms were analyzed by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results : The results exhibited that CCEE potently attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS levels in a dose-dependent manner without any cytotoxicity. CCEE treatment significantly induced the expression of HO-1 which is known for its antioxidative capacity. In addition, CCEE treatment significantly upregulated the expression of Nrf2, a corresponding transcription factor for the regulation of antioxidative enzymes, which was in accordance with the HO-1 overexpression. MAPK and PI3K/Akt were also evaluated for their important roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, the potent HO-1 expression was mediated by not extracellular regulated kinase (ERK), c-Jun NH2 terminal kinase (JNK), p38, but phosphoinositide 3-kinase (PI3K) phosphorylation. To confirm the antioxidative activity of CCEE-induced HO-1 expression, oxidative damage was initiated by t-BHP and attenuated by CCEE treatment, which was identified by HO-1 selective inhibitor and inducer. Conclusion : Consequently, CCEE potently induced the HO-1-mediated antioxidative potential through the modulation of Nrf2 and PI3K/Akt signaling pathways in RAW 264.7 cells. These results suggest that CCEE could be a promising strategy for the mitigation against cellular oxidative damage.

Neuroprotective effects of hesperetin on H2O2-induced damage in neuroblastoma SH-SY5Y cells

  • Ha-Rin Moon;Jung-Mi Yun
    • Nutrition Research and Practice
    • /
    • v.17 no.5
    • /
    • pp.899-916
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Oxidative stress is a fundamental neurodegenerative disease trigger that damages and decimates nerve cells. Neurodegenerative diseases are chronic central nervous system disorders that progress and result from neuronal degradation and loss. Recent studies have extensively focused on neurodegenerative disease treatment and prevention using dietary compounds. Heseperetin is an aglycone hesperidin form with various physiological activities, such as anti-inflammation, antioxidant, and antitumor. However, few studies have considered hesperetin's neuroprotective effects and mechanisms; thus, our study investigated this in hydrogen peroxide (H2O2)-treated SH-SY5Y cells. MATERIALS/METHODS: SH-SY5Y cells were treated with H2O2 (400 µM) in hesperetin absence or presence (10-40 µM) for 24 h. Three-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays detected cell viability, and 4',6-diamidino-2-phenylindole staining allowed us to observe nuclear morphology changes such as chromatin condensation and apoptotic nuclei. Reactive oxygen species (ROS) detection assays measured intracellular ROS production; Griess reaction assays assessed nitric oxide (NO) production. Western blotting and quantitative polymerase chain reactions quantified corresponding mRNA and proteins. RESULTS: Subsequent experiments utilized various non-toxic hesperetin concentrations, establishing that hesperetin notably decreased intracellular ROS and NO production in H2O2-treated SH-SY5Y cells (P < 0.05). Furthermore, hesperetin inhibited H2O2-induced inflammation-related gene expression, including interluekin-6, tumor necrosis factor-α, and nuclear factor kappa B (NF-κB) p65 activation. In addition, hesperetin inhibited NF-κB translocation into H2O2-treated SH-SY5Y cell nuclei and suppressed mitogen-activated protein kinase protein expression, an essential apoptotic cell death regulator. Various apoptosis hallmarks, including shrinkage and nuclear condensation in H2O2-treated cells, were suppressed dose-dependently. Additionally, hesperetin treatment down-regulated Bax/Bcl-2 expression ratios and activated AMP-activated protein kinase-mammalian target of rapamycin autophagy pathways. CONCLUSION: These results substantiate that hesperetin activates autophagy and inhibits apoptosis and inflammation. Hesperetin is a potentially potent dietary agent that reduces neurodegenerative disease onset, progression, and prevention.

Suppression of Microglial Activation by Acute Ethanol Administration through HT7 Stimulation (급성 알코올 투여 백서의 신문혈 자극이 소교세포 활성에 미치는 영향)

  • Su Yeon Seo;Se Kyun Bang;Suk Yun Kang;Seong Jin Cho;Kwang-Ho Choi;Yeonhee Ryu
    • Korean Journal of Acupuncture
    • /
    • v.41 no.2
    • /
    • pp.33-42
    • /
    • 2024
  • Objectives : The sigma-1 receptor is implicated in stress, depression, psychostimulant sensitization, and addiction vulnerability. Prior studies have indicated that ethanol exposure modulates sigma-1 receptor activity within the Ventral Tegmental Area (VTA). Here, we explore the sub-mechanisms underlying sigma-1 receptor activity induced by HT7 (Shinmun) stimulation in behavioral alterations following acute ethanol (ETOH) administration. Methods : Male Wistar rats were investigated for pro- and anti-inflammatory markers after injection of ETOH (1 g/kg) using cytokine enzyme-linked immunosorbent assay (ELISA)s. After confirming that HT7 stimulation changed the total distance traveled in the open field test (OFT), protein changes in the Ventral tegmental area (VTA) were measured by Western blotting. The expression level of inducible nitric oxide synthase (iNOS) after administration of a sigma-1 receptor antagonist (dihydrobromide 1047; BD1047, 10 mg/kg i.p.) and Shenmen (HT7) stimulation was compared. Results : As a result, acute ETOH administration increased proinflammatory marker levels (TNF-𝛼 and IL-6). HT7 stimulation restored the total distance response after acute ethanol administration. In addition, in the VTA, the levels of a microglial marker (iNOS), sigma-1 receptor and protein kinase C, which are predicted to be involved in up- and downregulation, were restored by HT7 stimulation. In particular, HT7 stimulation modulates iNOS expression through effects similar to BD treatment. This study suggests that the stimulatory effect of HT7 may be driven by microglial activation. Conclusions : Microglial activity is regulated by sigma-1 receptor, and sigma-1 receptor activity is regulated by HT7 stimulation. Significantly, we demonstrate that HT7 stimulation ameliorates behavioral alterations induced by acute ETOH administration through microglial activation within the VTA.